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Abstract

Stiff fine-grained soils are usually anisotropic, meaning their properties vary with direction.

While anisotropy effects on soil response are known to be important in geotechnics, the related

research is still limited due to complex testing and modelling.

Advances in numerical modelling now allow analysis of soil–structure interaction in boundary

value problems (BVPs). A key step is selecting a constitutive model that captures soil behaviour,

yet most models available in commercial codes are isotropic.

To address this, the anisotropic AHEBrick constitutive model was developed. Since strains

near well-designed structures are generally small, stiffness anisotropy is implemented in the

small-strain range. This is particularly relevant for geotechnical problems related to major

unloading, where stress redistribution is significant, making anisotropy in the pre-failure range

essential.

This work investigates stiff anisotropic clays with experimental support, focusing on con-

stitutive approaches for simulating anisotropy. The AHEBrick model is described, including

refinements to its first version. Validation with element tests, geotechnical BVPs, and real case

back-analyses highlights the role of stiffness anisotropy and its impact on soil behaviour.



Streszczenie

Sztywne grunty drobnoziarniste są zazwyczaj anizotropowe, czyli ich właściwości zmieniają się

w zależności od kierunku. Choć anizotropia silnie wpływa na zachowanie gruntu, badania są

ograniczone z powodu złożoności testów laboratoryjnych i modelowania.

Postęp w modelowaniu numerycznym pozwala dziś analizować interakcje grunt–konstrukcja

w zagadnieniach brzegowych (BVP). Kluczowe jest zastosowanie modelu konstytutywnego

wiernie odwzorowującego zachowanie gruntu, jednak większość modeli w programach komer-

cyjnych zakłada izotropię.

Aby przezwyciężyć te ograniczenia, opracowano anizotropowy model AHEBrick. Ponieważ

odkształcenia przy dobrze zaprojektowanych konstrukcjach są zwykle małe, anizotropię sz-

tywności wprowadzono w zakresie małych odkształceń. Jest to istotne zwłaszcza przy proce-

sach odciążenia, gdzie następuje redystrybucja naprężeń, a uwzględnienie anizotropii w zakresie

przedzniszczeniowym jest kluczowe.

W pracy analizowane są sztywne gliny anizotropowe z wykorzystaniem danych eksperymen-

talnych i podejść konstytutywnych. Opisano model AHEBrick oraz jego ulepszenia. Walidacja

poprzez testy elementowe, zagadnienia brzegowe i analizy rzeczywistych przypadków potwierdza

znaczenie anizotropii sztywności i jej wpływ na zachowanie gruntu.
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1

Introduction

1.1 Motivation

Due to the geological processes that influence soil microstructure, stiff fine-grained soils are

typically anisotropic, which means their properties vary with a direction. This directional

dependence may be observed as stiffness anisotropy, strength anisotropy or permeability

anisotropy. The influence of anisotropy on soil response has been confirmed in several stud-

ies, e.g. [3, 22, 76, 98, 102, 123, 138, 147, 179, 180]. Nevertheless, research on anisotropic soils is

relatively recent compared to isotropic soils, mainly because laboratory testing is far more com-

plex. Such tests require advanced equipment capable of measuring soil properties in different

directions.

With the development of numerical modelling, it has become possible to analyse soil-

structure interaction in boundary value problems (BVP) of the geotechnical cases. A crucial

aspect of this process is selecting a material model that reliably reproduces soil behaviour.

However, most of the material models, available in commercial software, are isotropic. The

closest option for representing stiffness and strength anisotropy is the Jointed-Rock Model,

which allows to assign separate strength parameters to discontinuities within the linear elas-

tic cross-anisotropic rock matrix. Furthermore, commercially available material models that

incorporate anisotropy into formulation are generally limited or complex, as they require a

large number of material parameters. However, the alternative anisotropic material models are

available in [153].

1.2 Aim

The initial version of the AHEBrick constitutive model, presented in this work, was first for-

mulated at Gdańsk University of Technology and described in [44]. This model introduces
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stiffness anisotropy within the small-strain range by implementing a hyperelastic kernel that

incorporates joint stress and microstructure invariant into the formulation. The resulting stiff-

ness anisotropy is then extended into the intermediate strain range. Stress history is accurately

reproduced with the use of the Brick procedure, proposed by Simpson [149], which is charac-

terised by the nonlinear stepwise stiffness degradation. In contrast, shear strength is modeled

using the isotropic Matsuoka-Nakai criterion [106]. The advantage of this model is that the

initial parameters can be obtained from laboratory tests.

Although both stiffness anisotropy and strength anisotropy occur in stiff soils, the AHEBrick

model introduces only stiffness anisotropy in the small-strain range, since strains around well-

constructed structures are generally small [34]. Accurate characterization of soil stiffness in

this range is therefore essential. Moreover, stiffness anisotropy influences the stress path under

undrained conditions, thus also affecting the undrained shear strength of the soil [150]. Due to

the fact that the most critical displacement occurs during short-term and undrained conditions,

the AHEBrick model seems to be suitable for capturing the behaviour of stiff anisotropic

soils. Additionally, in this work, soil-structure interaction problems related to soil removal,

such as tunnel drilling, deep supported excavations and open-pit excavations are analysed.

These processes cause significant unloading, which in turn leads to major stress redistribution.

Therefore, for such cases, modeling anisotropy in the pre-failure range is essential.

The aim of this work is to improve and validate the AHEBrick model and to investigate

whether the model, which accounts for barotropy, stiffness anisotropy and nonlinear stiffness

degradation within the pre-failure regime, is able to produce satisfactory results, regardless the

applied isotropic shear strength criterion.

1.3 Scope

This work examines the properties of stiff anisotropic fine-grained clays, supported by exper-

imental evidence. The primary focus, however, is on constitutive models and approaches for

simulating anisotropy. Considering the characteristics of the AHEBrick model, the discussion

of anisotropy and its numerical simulation is centered on stiffness anisotropy, which is defined

within the small-strain range.

The AHEBrick model is described in detail and the refinements added to the initial version

are presented. The in-depth parametric analysis is carried out to demonstrate the influence

of the material constants on soil response. The model is then validated using element tests,

geotechnical BVPs, and back-analyses of real cases. Particular attention is dedicated to ex-
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amining the effects of stiffness anisotropy on the selected geotechnical problems. This analysis

makes it possible to assess the actual impact of the magnitude of anisotropy on soil behaviour.

This work is arranged in a following way:

Chapter 2: Nonlinear pre-failure stiffness of soils

The magnitude of soil stiffness is highly dependent on the stress level (barotropy) and degrades

nonlinearly with strain. This chapter presents experimental evidence of both barotropy and

stiffness degradation, followed by a discussion of modeling approaches for pre-failure soil be-

havior. Barotropy can be incorporated into an elasto-plastic framework by introducing stress

dependency into the elastic stiffness. Barotopic models can either be hypoelastic or hyperelasic.

Examples of these formulations are presented, with particular emphasis put on the hyperelastic

model proposed by Vermeer [163], as it plays later a key role in the AHEBrick model. The

behaviour of soil within small intermediate and large strain ranges is then described. Nonlin-

ear stiffness can be represented using hysteretic models, however, these often struggle to track

stress-strain history of a material, especially concerning stiffness recovery following sharp stress

path reversals. To overcome this limitation, models that properly capture stiffness changes dur-

ing small stress reversals employ the concept of nested yield surfaces. This concept is explained.

Finally, a multi-surface Brick-type model, formulated in strain space and proposed by Simpson

[149], is presented. A modified version of the Brick procedure is later used in the AHEBrick

model.

Chapter 3: Anisotropy of soils

In this chapter, the description and origin of anisotropic properties of soils are presented.

Two types of anisotropy are distinguished: inherent anisotropy, which is fully dependent on

soil microstructure and stress-induced anisotropy, which is influenced by the magnitude and

rotation of principal stress components. In general, anisotropic soils exhibit cross-anisotropy,

meaning their properties are symmetric about the axis normal to the bedding plane (the plane of

isotropy). Subsequently, experimental evidence of mechanical anisotropy is presented: stiffness

anisotropy in the small-strain range and strength anisotropy at large strains. Methods for

testing anisotropic parameters are discussed. Then the examples of soils that exhibit anisotropic

behaviour are provided.

Chapter 4: Constitutive modelling of anisotropy

This chapter presents approaches to modelling anisotropic mechanical properties. Linear elas-

tic models which incorporate anisotropic stiffness are discussed, including their parameters and
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the limitations associated with proper model definition. Subsequently, the method for intro-

ducing anisotropy into nonlinear models is presented. It is done by the incorporation of joint

invariants of stress and microstructure into the formulation [23, 24]. This approach, used to

define anisotropic failure criteria, is described for the model proposed by Pietruszczak and Mróz

[133, 134]. A quite interesting method of introducing inherent cross-anisotropy into arbitrary

isotropic models is proposed by Niemunis and Staszewska [121] is then described. In this ap-

proach, cross-anisotropic characteristics of soil microstructure are superimposed on isotropic

elastic stiffness tensor or shear strength criterion by a special scaling method.

Chapter 5: Anisotropic hyperelastic-plastic model for stiff soils

In this chapter the AHEBrick model is defined. The model description is organised into three

parts: the small-strain range, the intermediate strain range, and the yield surface in a form

of shear strength envelope. The first section presents the formulation of the anisotropic hy-

perelastic kernel. All initial stiffness parameters of the AHEBrick model are described, along

with their functions and limitations. Methods for determining these parameters from labora-

tory test data are also presented. The marginal influence of parameter c1 on anisotropy changes

has been demonstrated, and its value has therefore been established as a constant (c1 = 1.0).

Consequently, parameter c2 can be directly correlated with the cross-anisotropy coefficient αG.

This reduces the number of required material parameters and simplifies their determination

from laboratory tests. Within the intermediate strain range, the nonlinear degradation of stiff-

ness is presented, for which the previously described Brick procedure was used. The selection of

an appropriate strain measure is then discussed. Subsequently, the isotropic Matsuoka-Nakai

shear strength criterion is introduced. Finally, the procedure for implementing the model into

a commercial FE code [26] is described.

Chapter 6: Verification of the AHEBrick model in element tests and exemplary

BV problems

In this chapter, the AHEBrick model is verified. First, the simulations of laboratory tests

on a single element is presented. The influence of selected model parameters on soil response

is examined. Based on laboratory data, model parameters are then calibrated so the imple-

mented material model reproduces the observed mechanical behaviour of tested soils as closely

as possible. The model response is further validated through FE simulations of geotechnical

boundary value problems. The aim of BVPs is to investigate material parameter influence on

the soil-structure interaction, hence the homogeneous soil layout and basic flow conditions are
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considered. The investigations are carried out for tunnel drilling, open excavation and supported

excavation cases, where anisotropic properties in the small and intermediate strain ranges play

a critical role, as the soil undergoes significant unloading.

Chapter 7: Application of the AHEBrick model in case studies

In this chapter the AHEBrick model is validated against real geotechnical cases. The purpose

of such analysis is to verify the extent to which the adopted material model is able to reflect

reality. For this reason, the model geometry and construction procedure are closely based on

the data reported in literature. The results are then compared to corresponding field measure-

ments of well documented case studies. The following analyses concern the cases of twin tunnel

construction in London Clay [32, 33], FE and HG-A tunnels in Opalinus Clay [102, 115] and

trial open-pit excavation in Oxford Clay [70, 132].

Chapter 8: Conslusions

The main conclusions of this work are presented.



2

Nonlinear pre-failure stiffness of soils

Up to 1970s, the discrepancy between the in situ stiffness and stiffness tested in laboratory

conditions, was thought to be caused by a sample disturbance. As finite element method had

become popular in the numerical simulations of geotechnical boundary value problems, it was

possible to verify the stiffness parameters obtained from the laboratory tests by the back anal-

yses of real cases and its comparison to the field measurements. When field deformation mea-

surements were juxtaposed with calculation results based on stiffness parameters obtained from

the standard laboratory tests, it was quickly discovered that the real soil stiffness is frequently

underestimated [34, 42, 154, 172]. It was then established that soil stiffness is highly dependent

on the stress level and strain history a material is subjected to [10, 149, 154].

These dependencies are presented in Fig. 2.1 for the example of Hachirougata Clay [145]. The

results of the cyclic torsion shear (CTS) tests are presented through the relationship between

the secant shear modulus Geq, defined as the slope of the line connecting two peaks of the

hysteresis loop, and single amplitude shear strain γSA. Eight undisturbed soil samples were

tested under various values of the isotropic consolidation pressure p0. The results clearly show

the influence of stress level on soil stiffness. The value of stiffness modulus increases along with

the increasing effective stress level. This dependence of soil stiffness on stress level is called

barotropy. Typically, the stiffness modulus is expressed as a function of the mean stress p or of

one of the principal stress components σi.

On the other hand, stiffness of a material decreases nonlinearly during straining. As shown

in Fig.2.1b, the relationship between shear modulus Geq and strain γSA can be represented

on a logarithmic scale by a characteristic S-shaped curve. Based on a soil behaviour, three

strain ranges can be distinguished: small, intermediate, and large. In the literature, the terms

very small, small, and large strains are also used interchangeably, eg. [20, 41, 129]. Within the

small-strain range, the value of stiffness can be considered constant. For Hachirougata Clay,



2.1 Barotropy 7

(a) (b)

CTS test

thin-wall piston sampler (T)

NGI-type sampler (N)

Fig. 2.1: Relation between shear modulus Geq and single amplitude shear strain γSA, obtained from CTS test on

undisturbed Hachirougata Clay samples: a) the variation of shear moduli Geq under different isotropic consolidation

pressure, b) shear moduli Geq normalised by Gmax, after [145]

this phenomenon is observed up to γSA = 10−4. Beyond this point, in the intermediate and

large strain ranges, nonlinear degradation of stiffness occurs.

Within the framework of elasto-plasticity, barotropy is mainly taken into consideration in

the elastic region, in order to properly determine the value of the initial stiffness modulus. This

value is subjected to the stiffness-strain degradation within the intermediate strain range. The

description of the influence of stress level and stain history on the current soil stiffness and the

modelling approaches of the pre-failure soil behaviour are presented in this chapter.

2.1 Barotropy

Constitutive modelling at small elastic strains is expressed by the following relation between

stress and strain:

σ = Ds : ε
e, σ̇ = Dt : ε̇

e, (2.1)

in the form of secant relationship between stress and elastic strain or tangent relationship

between stress rate and elastic strain rate. The forth order tensors Ds and Dt refer to secant

and tangent stiffness, respectively. They are related to the forth order secant and tangent

compliance tensors Cs, Ct in a following way: Cs = (Ds)−1 and Ct = (Dt)−1.

The simplest small-strain model is based on the Hooke’s linear isotropic elasticity:
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Dt
ijkl =

E0

(1 + ν0)(1 − 2ν0)

[

ν0δijδkl +
1 − 2ν0

2
(δikδjl + δjkδil)

]

, (2.2)

where E is the Young’s modulus and ν is the Poisson’s ratio. Subscript ()0 refers to the ini-

tial (small strain) values. In this formulation, the secant and tangent relations have the same

constant stiffness.

However, in reality, the magnitude of initial elastic stiffness moduli is highly influenced by

the current stress state. Therefore, the dependency of the stress level on the initial soil stiffness

needs to implemented within the small strain range.

2.1.1 Hypoelasticity

The application of the empirical correlations to Hooke’s law isotropic elasticity is the simplest

way to create a nonlinear elastic model with barotropic stiffness, for which Young’s modulus

E(σ) is stress dependent and Poisson’s ratio ν is constant:

Dt
ijkl(σ) =

E(σ)

(1 + ν)(1 − 2ν)

[

νδijδkl +
1 − 2ν

2
(δikδjl + δjkδil)

]

. (2.3)

It should be noted that, in the context of hypoelasticity, it is often difficult to determine whether

the parameters refer to tangent or secant stiffness. For this reason, the parameters are presented

without the subscript ()0.

Commonly used barotropic relation is based on power law:

E(σ) = Eref

(

p

pref

)m

, (2.4)

where m is power law exponent that defines the order of the stress-stiffness relation. Another

popular empirical equation was proposed by Ohde [127] and Janbu [80]:

Eoed(σ) = wEref
oed

(

−σ3 + a

pref + a

)n

, (2.5)

where the tangent oedometric modulus Eref
oed is measured at the reference pressure pref and w,

a = c cotφ, n are the material constants.

While empirical relations work well concerning a fit to the experimental data, their incor-

poration into Hooke’s elastic stiffness may result in a non-conservative behaviour, meaning it

allows for the accumulation of stress or strain and the generation of energy for some closed strain

or stress cycles, respectively [119, 121]. In this regard such models can be called hypoelastic.

To evaluate whether the model is conservative, the stress response to a circular strain loop in

the principal strain space can be investigated. Such closed strain loop naturally occurs during
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Hooke's elastic stiffness

hypoelastic stiffness

Fig. 2.2: Stress paths obtained for a five-cycle closed circular strain loop in
√

2εe
3 − εe

1 plane. In the case of hypoelastic

formulation stress accumulation occurs, after [44]

the propagation of a Rayleigh wave. Presented in Fig. 2.2 stress paths are obtained over five

cycles of the circular strain path. The analysis is carried out for Hooke’s linear elasticity and

a hypoelastic stiffness defined with the power law expression in Eq. 2.4. The parameters are

chosen so that both models produce the same response envelope at the initial stress state σ0.

If the stress response forms a closed loop in stress space, the model is considered conservative.

In contrast, the hypoelastic model produces open loops, where the stress values progressively

increase with each cycle.

Based on the preceding analysis, it can be concluded that the application of hypoelastic

models to geotechnical problems involving dynamic or cyclic loading may lead to significant

computational errors [75, 121]. Nevertheless, if stress or strain does not form a closed loop, the

stresses and strains revert to their original values, even when a non-conservative model is used

[119].

2.1.2 Hyperelasticity

A conservative elastic material should not assume stress and energy accumulation in closed

strain loops [47, 121]:
∮

Dt
ijkldε

e
kl = 0,

∮

Ct
ijkldσkl = 0,

∮

σijdε
e
ij = 0, (2.6)

where Dt and Ct are fourth order tangent stiffness and compliance tensors. This type of relation

is called hyperelastic. The most straightforward way of formulating a truly hyperelastic material

model is to use the elastic potential function W [44, 73, 119]. This elastic potential can be

denoted either as negative Gibbs free energy W (σ) - a scalar function of stress or Helmholtz

free energy W (εe) - a scalar function of elastic strain. Secant compliance and stiffness tensors
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(Cs, Ds) can be obtained by the differentiation of stress based and elastic strain based potential

functions respectively:

εe
ij =

∂W (σ)

∂σij

= Cs
ijklσkl, (2.7)

σij =
∂W (εe)

∂εe
ij

= Ds
ijklε

e
kl. (2.8)

Whereas tangent compliance and stiffness tensors (Ct, Dt) are obtained as second derivatives

of the potential functions:

Ct
ijkl =

∂2W (σ)

∂σij∂σkl

, (2.9)

Dt
ijkl =

∂2W (εe)

∂εe
ij∂ε

e
kl

. (2.10)

It is impossible to directly measure an elastic potential function by any experiments. How-

ever, one can formulate it on the basis of trial analysis and inspection, for example, by comparing

the response from the model with some test results. An overview of some hyperelastic potentials

is provided in [119, 174].

The strain-based elastic potential was proposed by Houlsby et al. [74]:

W (εe) =
pref

k(2 − n)
[k(1 − n)]

2−n
2−2n

{[

k(1 − n) − 2g

3

]

tr 2(εe) + 2gtr
(

ε
e2
symm

)}
2−n

2−2n

, (2.11)

where n, k g are dimensionless parameters. Another example was presented by Xiao et al. [173]:

W (εe) = A (εe
V )m)

[

(εe
V )2 + ξ (εe

s)
2
]

, (2.12)

where A, ξ are elastic constants, εe
V is volumetric elastic strain and εe

s =
√

ee
ije

e
ij is the sec-

ond invariant of elastic strain tensor εe
ij. In both cases, the provided models account for the

anisotropic material.

On the other hand, the formulation, proposed by Boyce [25], assumes secant stiffness moduli

Gs, Ks to be functions of stress invariants p, q:

Gs(p, q) = g1pref

(

p

pref

)1−n1

andKs(p, q) = k1pref

(

p

pref

)1−n1



1 − (1 − n1)
k1

6g1

(

q

p

)2




−1

,

(2.13)

where g1, k1, n1 are dimensionless parameters.

Usually, the commercial FE codes, eg. [26], are displacement-based, hence in this case tan-

gent stiffness tensor is required. For elastic potentials, defined with the function of strain, Dt is

obtained directly as second derivative. However, if the provided formulation is stress-dependent,
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tangent stiffness may be acquired either numerically or analytically by inverting tangent com-

pliance tensor Ct = (Dt)−1. Another approach concerns attaining elastic potential function of

strain W (εe), that corresponds to the stress based potential, by the Legendre transform applied

on a scalar function of stress W (σ) [74].

The following formulation is very important in the context of this work, which is why it

is described here in more detail. The potential presented by Vermeer [163] takes the following

form:

W (σ) =
3p1−β

ref

2Gref
0 (1 + β)

[
2

3
Q(σ)

] 1+β

2

, where Q(σ) =
1

2
tr σ

2 =
1

2
σabσab. (2.14)

This function is based on the parameters that can be easily tested in laboratory conditions

and are used in engineering practises, where Gref
0 is the small-strain tangent shear modulus

measured at the reference isotropic stress p = pref, and β is a material constant dependent on

Poisson’s ratio:

β = −2 +
3

1 + ν0

and ν0 =
1 − β

2 + β
. (2.15)

Tangent compliance is obtained due to differentiation of the function W (σ) (see Eq. 2.9):

Ct
ijkl =

1

2G0

[
1

2
(δikδjl + δilδjk) − (1 − β)

σijσkl

σabσab

]

. (2.16)

Whereas the stiffness matrix can be a result of analytical inversion of the compliance matrix:

Dt
ijkl = 2G0

[

1

2
(δikδjl + δilδjk) − (β − 1)

β

σijσkl

σabσab

]

, (2.17)

where G0 is shear modulus dependent on stress:

G0 = Gref
0





√
1
3
σabσab

pref





1−β

. (2.18)

The influence of stress on the stiffness obtained from Vermeer’s hyperelastic potential can

be studied in a graphical form of the so-called response envelope [61]. It is a useful tool to

study the differences of parameter influence, especially for small strain stiffness formulations.

It is described as a polar representation of the tangent compliance or stiffness tensor. It is

illustrated in Fig. 2.3 as a closed curve response of material stiffness or compliance to a radial

stain or stress probes in the selected stress or strain planes (
√

2σ3 −σ1,
√

2εe
3 −εe

1), respectively.

It is possible to obtain response envelopes in a laboratory environment, e.g. [64, 90], however

the testing is still extremely complex.
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const

Fig. 2.3: A schematic representation of a response envelope in the triaxial plane (σ2 = σ3) to a strain probe. The strain

increment controls the size of the ellipses and can be used as a scale. The white and dark grey dots show purely deviatoric

and volumetric strain increments, respectively, after [47]

In Fig. 2.4 the response envelopes of the Vermeer’s nonlinear hyperelastic stiffness are shown.

Three axisymmetric stress ratios (K = σ3/σ1 = 0.5, 1.0, 2.0) are considered. If stress state is

deviatoric (K 6= 1.0), the obtained envelopes are rotated with a respect to the hydrostatic axis

K = 1.0. Moreover, if the reference pressure pref increases, the ellipses get larger accordingly.

This model is compared to the Hooke’s isotropic linear elasticity. The value of the Hooke’s law

stiffness Eref
0 is selected in a way that it correlates to the hyperelastic model parameter Gref

0 ,

Vermeer's hyperelastic model

Hooke's linear isotropic model

Fig. 2.4: Comparision of the response envelopes for Vermeer’s nonlinear hyperelastic and Hooke’s linear elastic models.

The values of Hooke’s stiffness parameters Eref
0 = 120000 kPa, ν0 = 0.2 correspond to the parameters used in Vermeer’s

model: Gref
0 = 50000 kPa, β = 0.5
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following the relation:

Eref
0 = 2Gref

0 (1 + ν0), (2.19)

where tangent moduli Eref
0 and Gref

0 are measured at the reference pressure pref and the value

of ν0, which corresponds to β parameter, is obtained form the expression in Eq. 2.15. Since the

Hooke’s stiffness is not depended on stress, the size and the position of the envelopes remain

the same regardless the stress state.

2.2 Stiffness-strain degradation

A material response to loading can be described by taking into account the kinematic nature

of soil stiffness presented by Jardine [82]. As presented in Fig. 2.5, the distinct zones of soil be-

haviour can be identified corresponding to different soil stiffness ranges. Each zone is restricted

by a kinematic surface Yi. Those surfaces are controlled by strain thresholds. The extensive

overview of reported strain thresholds for different soils is featured in [49]. Strain ranges coin-

cide with kinematic zones as follows: small-strain range - zone 1 and zone 2, intermediate strain

range - zone 3, large strains - zone 4.

It has been proven in [34], based on numerous practical cases of geotechnical problems

[14, 17, 35, 91], that the soil straining around well constructed objects rarely exceed the value

of 0.1%. Hence, the proper determination of soil stiffness within the small-strain range is crucial.

10-5 10-4 10-3 10-2 10-1

zone 1 zone 2 zone 3

zone 1

zone 2

zone 3

zone 4

retaining walls

foundations

tunnels

Fig. 2.5: Kinematic behaviour of soil stiffness presented by Jardine [82] in regards to S-shaped stiffness-strain relation.

The thresholds of kinematic surfaces Yi depend on the soil. Typical strain rates around structures rarely exceed 0.1%

[13, 104]
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Soil stiffness at small strains is measured by the means of dynamic testing. The standard

parameter indicating small-strain stiffness rate is the initial shear modulus G0. In soil dynamics

two types of seismic waves can be distinguished: body waves and surface waves. Surface waves

propagate on ground face or along the interfaces of soil materials with different stiffness. They

are dispersive and originate from the interaction of shear and compressive waves at the surface.

Two types of surface waves can be differentiated: Rayleigh waves and Love waves. Rayleigh

waves move elliptically in the vertical direction away from a surface energy source, whereas

Love waves propagate horizontally form the epicentre [40].

The body waves, shown in Fig. 2.6, travel through a soil at given velocity, controlled by

its stiffness and density. Primary compressive waves (P-waves) mainly depend on volumetric

compressibility of soil, whereas secondary shear waves (S-waves) account for material shape

change with no impact to volume. The values of shear and oedometric moduli can be calculated

based on soil wave propagation velocity and material bulk density ρ:

Eoed0 = ρv2
p, G0 = ρv2

s , (2.20)

where vp and vs are the velocities of a P-wave and a S-wave, respectively.

Although, it may vary, depending on the investigated material, in general, small strains are

considered up to the value of γ = 10−3. Inside the zone 1 the soil behaviour is considered

purely elastic and the strains are fully recoverable. Stiffness moduli are at their maximum

and, for practical purposes, these parameters are assumed constant up to the elastic threshold

restricted by kinematic surface Y1. Typically, the elastic limit is contained within the range of

γ = 10−6 ÷ 10−4. In Fig. 2.7 the linear soil behaviour in zone 1 is presented for the example

polarisation

(P-wave)

(a)

(b)

vertical

polarisation

(S-wave)

propagation direction

Fig. 2.6: Seismic small-strain stiffness identification of a isotropic soil material: a) compressive P-wave, b) shear S-wave,

after [19]



2.2 Stiffness-strain degradation 15

virgin loading

unloading

reloading

(a) (b)

zone 1 zone 2 zone 1 zone 2

1
1

Fig. 2.7: Stress-strain relation of Toyoura Sand. The results of a) a torsional shear test and b) a plane strain compression

test show the strain range within which the material response is elastic, after [159]

of Toyoura Sand [159]. For this material the value of the surface Y1 has been tested to be at

γ = 5 × 10−6 and εa = 2 × 10−5. The results of the plane strain compression test (Fig. 2.7b)

show a non-recoverable response during the first unloading-reloading cycle, suggesting some

degree of non-elastic soil behaviour. However, for very small strain values, the secant stiffness

modulus measured during unloading-reloading is consistent with the one obtained during the

initial loading. Similar trends are observed for the triaxial tests conducted on both kaolin and

undisturbed Tokyo Bay Clay samples [114], subjected to isotropic and anisotropic consolidation.

These results indicate that, within this strain range, the soil behaviour can be considered truly

elastic [82].

When deformation extends into zone 2, it remains fully recoverable, however, the stress-

strain relationship of soil becomes nonlinear, and load-unload cycles form closed hysteresis

loops. According to [82], the energy dissipation reflected in these hysteretic loops arises from

localized, small-scale yielding at particle contacts.

One of the key features of soil behaviour within this kinematic zone is the strong dependence

of soil stiffness on the recent stress history [12, 141]. This effect is illustrated in Fig. 2.8 for

reconstituted London Clay samples, subjected to drained compression or extension tests [12].

The samples were loaded along a constant p path (0A), but the initial stress point (0) was

approached from different directions (θ = −90◦, 0◦, 90◦, 180◦). Depending on the path rotation

θ, the corresponding tangent shear stiffness Gt changes. In case of drained compression, the
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extension
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Fig. 2.8: The influence of stress history on the reconstituted London Clay stiffness. Triaxial drained extension and

compression tests for constant p paths (0A) preceded by stress paths at different angle θ, after [12]

highest value of Gt was obtained for θ = 180◦, whereas the tangent shear stiffness of a sample

subjected to θ = 0◦ path is almost six times smaller. Similar trend is evident for the drained

extension tests. This effect diminishes at larger strains, where the stiffness converges to the

same value regardless of stress history.

Kinematic surface Y2 denotes the plastic threshold of soil. Reported values of elastic thresh-

old range from 10−4 to 10−3 for overconsolidated stiff clays, e.g. [81]. Beyond this boundary,

connections between particles fail and as a result particle movements follow.

Transition from zone 2 to zone 3 entails further development of deformation albeit of the

unrecoverable one, which can be distinguished by open hysteresis loops. Such change is illus-

trated in Fig. 2.9 showing the stress-strain behaviour of reconstituted Magnus till subjected to

undrained triaxial test. The three load-unload cycles were performed. After the first stage, the
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creep
zone 2

zone 3

creep

Fig. 2.9: The load-unload cycles of a Magnus till sample, showing transition from zone 2 to zone 3 (dashed line), after

[82]

obtained response is clearly within the zone of recoverable strains, characterised by nonlinear

hysteretic loop. However, as the deviator load increases, in two next cycles, the permanent

strains become notable, as well as creep at constant q.

Within zone 3 the biggest drop of soil stiffness can be noted (Fig. 2.5), hence the modelling

of soil behaviour within this strain range has crucial practical applications in geotechnical

structural serviceability evaluations [44]. Further loading can lead to reaching kinematic surface

Y3 - yield surface. Beyond this border large plastic strains occur and soil attain the state of

normal consolidation [60].

2.2.1 Stiffness degradation modelling

Nonlinear approach to stiffness modelling, described in Sec. 2.1, properly reflects initial stiff-

ness and its depth-dependent distribution. Soil stiffness increases with the mean stress level p,

however it simultaneously decreases with strain. Therefore, to accurately model the pre-failure

behavior of soil, it is necessary to account for both barotropy and stiffness degradation.
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In literature one can find numerous proposals of stiffness-strain modelling. In order to main-

tain a realistic nature of material stiffness, a chosen stiffness-strain relation should properly

simulate soil behaviour under cyclic load. This can be fulfilled by incorporating the effects of

hysteresis into a model - a material response to load cycle forms a closed hysteretic loop in

stress-strain space. One of the most commonly used hysteretic models, which describes secant

shear modulus degradation, was proposed by Hardin and Drnevich [63]:

Gref
s

Gref
0

=
1

1 + |γ/γr|
, (2.21)

where γ is shear strain, γr = τfailure/G
ref
0 denotes threshold strain. Santos and Correia [142]

suggested the modified version of the Eq. 2.21:

Gref
s

Gref
0

=
1

1 + 3
7
γ/γ0.7

. (2.22)

Here, the threshold strain γ0.7 corresponds to the value of secant shear modulus Gref
s reduced

to 0.7Gref
0 .

The main drawback of the aforementioned expressions is the potential difficultly in tracking

stress-strain history of a material, especially concerning stiffness recovery following sharp stress

path reversals. For example, the relation in Eg. 2.22 is used in the small-strain constitutive

model (Hardening Soil-Small model) proposed by Benz [19]. The HSS model was developed

as a refinement of the popular Hardening Soil [143] model used in commercial FE codes, as

it extends the HS model with small-strain stiffness definition. However, in case of HSS model,

if a small unloading-reloading cycle occurs during monotonic loading (caused, for example, by

dynamic disturbance), the stress history may be erased and, as a result, the obtained stiffness

becomes much greater than in reality [120]. This phenomenon is known as overshooting. A

proposed solution to the problem of overshooting in the HSS model is presented in [48].

Models, which properly control stiffness changes during small stress reversals are based on

the concept of nested yield surfaces. This idea was first presented in works by Mróz [113] and

Iwan [78]. The general assumption of a model is to define a finite number of yield loci in stress

or strain space. The innermost surface corresponds to the range of small-strain elastic stiffness,

whereas the outermost surface is associated with a conventional bounding surface. In theory,

every loci can be subjected to kinematic or anisotropic hardening, meaning its shape and size

can change with increasing stress. However, it would result in an introduction of additional

state variables and a complex formulation and implementation. Hence, in numerous models,

the inner surfaces are only capable of movement, and any hardening effects are applied to the

bounding surface.
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f1
f2
f3

f5=fB
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f4

(2)

(3)

Fig. 2.10: Schematic presentation of the concept of nested yield surfaces fi in stress space for the case of uniaxial

compression, after [113, 118]: (1) loading, (2) unloading, (3) reloading

The schematic example of a multi-surface model performance, in stress space, is presented

in Fig. 2.10 for a uniaxial compression. The initial stress point is in the middle of the innermost

nested yield surface, determining the elastic behaviour of the soil. With the increasing stress,

the boundary of the first surface is approached. When the value of the current stress exceeds

this limit, the response of soil becomes elasto-plastic, and the first plane gets pulled along.

As stress continues to increase, the consecutive surfaces are activated. This action is directly

related to stiffness degradation of the soil. Additionally, along with the change of location of

the nested yield surfaces, the stress history is established. The movement of the loci continues

up to the immovable bounding surface. This surface is reached once the shear strength criterion

is satisfied. In certain cases, the surface may coincide with the state of normal consolidation,

but only in the absence of hardening. A stress path reversal occurs in case of unloading. It

results in the deactivation of the all surfaces. In consequence the soil response is elastic again

and stiffness regains its initial value.
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The concept of nested yield surfaces was utilised in so-called bubble models [5, 6]. In this

case a singular surface is implemented (a bubble) defining small-strain elastic behaviour of soil.

In another model, presented in [137], three yield surfaces are described, which subsequently

correspond to kinematic zones proposed by Jardine [82].

A multi-surface model, formulated in strain space, was proposed by Simpson et al. [149],

and later validated with the numerical simulation of retaining structures [147]. In order to

describe this model, an analogy of a person pulling a number of bricks around a room is used.

A schematic explanation of this comparison is presented in Fig. 2.11. The room represents strain

space and the person walking around it symbolises a current strain state. Bricks are tied to the

person with a set of strings. Each string has a different length that corresponds to the radius

of a consecutive nested yield surface. At initial state, the position of the man and the bricks is

close to each other and every rope is slack. The value of soil stiffness modulus is then considered

to be at its maximum. The moment the person starts to move the bricks gradually follow the

same path, beginning with the ones tied to the shortest strings. Every time the man begins

to pull the next brick, the soil stiffness degrades in stepwise fashion. The minimum stiffness

is obtained when all bricks are in motion. In case of a sudden change of a loading direction

man

(1) (2) (3) (4)

bricks slack string taut string

Fig. 2.11: An analogy of a man pulling bricks used to describe Brick model proposed by Simpson [147]. Stiffness degrades

in stepwise fashion during the monotonic strain path (1-3) but its initial value is recovered due to the sudden unloading

(4)
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in strain space, i.e. the person turns back or stops, the string go slack and the initial value of

shear modulus is attained.

In the original formulation of Simpson’s Brick model, the magnitude of each stiffness drop,

so-called stiffness proportion, is strictly related to the sting length sj and the ratio of the actual

reference tangent shear modulus Gref
t to the reference initial shear modulus Gref

0 . The measure

of the string length is specified in strain space. This distance, given plane strain conditions

(ε31 = ε23 = ε33 = 0), can be expressed as Euclidean norm:

||ε|| =
√
εiεi =

√

ε2
V + (ε22 − ε11)2 + 4ε2

12 =
√

ε2
V + γ2

M , (2.23)

where three strain space components εi are:

ε1 = εV = ε11 + ε22, ε2 = ε22 − ε11, ε3 = γ12 = 2ε12 (2.24)

and γM =
√

(ε22 − ε11)2 + 4ε2
12 is the diameter of Mohr’s circle.

Later, the Brick model was extended to operate in three dimensional space, defined with six

stain components εi [39, 99]:

ε1 = εV = ε11 + ε22 + ε33, ε2 = ε33 − ε11, ε3 =
2ε22 − ε11 − ε33√

3
, (2.25)

ε4 = γ12 = 2ε12, ε5 = γ23 = 2ε23, ε6 = γ31 = 2ε13.

In this case, the Euclidean norm takes the following form:

||ε|| =

√
√
√
√

6∑

i=1

εiεi =
√

ε2
V + (ε2

2 + ...+ ε2
6) =

√

ε2
V + 3ε2

q =

√

ε2
V +

3

2
γ2

oct, (2.26)

where εV and εq are volumetric and deviatioric strain, respectively and

γoct =

√

4

3
eijeij = (2.27)

=
2

3

√

(ε11 − ε22)2 + (ε22 − ε33)2 + (ε33 − ε11)2 + 6(ε2
12 + ε2

23 + ε2
31)

is the octahedral shear strain.

The Brick procedure itself is only responsible for the description of stiffness-strain rela-

tion. Hence, an advanced elastic law that determines soil response within small-strain range

is required to obtain a properly formulated constitutive model. The Brick-type models are

found to be especially effective considering the simulation of clayey soil behaviour, e.g.

[4, 39, 45, 48, 99, 148].
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Anisotropy of soils

Soil deposits have been formed, over millions of years, due to geological, chemical, biological

processes and climate changes (glacial periods). Weathering products of a parent material are

transported to other regions through agents (e.g. water, wind, landslides) and then subjected to

sedimentation and deposition. All postdepositional processes concerning changes in a sediment,

such as diagenesis, cementation and consolidation affect directly soil microstructure and its

physical, mechanical and hydraulic properties [110, 112].

In the early stages of deposition, particles of fine grained cohesive soils tend to align edge-

to-face, which is caused by their magnetic properties; an edge of a singular clay shale is charged

positively, whereas a face - negatively [18, 128]. This so-called honeycomb structure exhibit

isotropic properties and is characterised by relatively high porosity. Such soils typically originate

from young Holocene marine and lake deposits [160]. These are usually very compressible soft

soils.

(a) (b)

Fig. 3.1: SEM images of shale microstructure contacts: a) edge-to-face, b) face-to-face, from [170]
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While undergoing consolidation process, soil microstructure is subjected to volumetric strain-

ing, in consequence creating more compacted face-to-face arrangement of clay particles oriented

normal to the stress direction. This laminate structure is especially a characteristic of stiff over-

consolidated clay soils, subjected to one-dimensional consolidation, which mechanical properties

depend on particle orientation. Due to material packing, void ratio decreases and small fissure-

like pores form along distinctive layers resulting in anisotropic hydraulic nature of such clays

[170]. Both honeycomb and laminar type of microstructure, captured using scanning electron

microscopy technique (SEM), are presented in Fig. 3.1.

Permeability of a soil deposit may vary due to local changes of soil mineralogy, microstructure

and material discontinuities. It is possible that dissipation of pore water can occur at a slower

rate than the sedimentation process. In result, upward water migration can be prevented by

compacted soil layers with reduced permeability. Zones, in which high excess pore water pressure

is generated, exhibit the behaviour of normally consolidated, thus maintaining edge-to-face

microstructure. Such soil behaviour under locally varying hydraulic properties is portrayed in

Fig. 3.2. This process, however, is temporary, as under growing overburden load, the particle

structure collapses creating face-to-face contacts [144].

Soil structure, geological history and in situ stress state induce either isotropy, cross-

anisotropy or orthotropy in a soil material. Granular soils and normally consolidated clays

with a random particle orientation are typically isotropic - their properties do not change with

orientation. A cross-anisotropic (transversely isotropic) material exhibits direction-dependent

properties that are symmetric about the axis normal to the bedding plane arrangement, so-

called plane of isotropy. A more detailed description of such soils is presented later in this

edge-to-face

contacts
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layer

excess water
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Fig. 3.2: Scheme of soil compaction disruption caused by local permeability changes, after [144]
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chapter. The most complex soil behaviour, orthotropy, assumes different parameter values for

all three mutually perpendicular directions. It usually can be applied for rock masses with

prominent joints and discontinuities. Directional dependency of isotropic, cross-anisotropic and

orthotropic material is shown in Fig. 3.3.

The mechanical behaviour of soils assumed as isotropic has been well studied over years.

In contrast, the response of both cross-anisotropic and orthotropic soils are yet to be fully

understood, due to the complex and expensive laboratory testing. In this work the analysis of

the directional-depended behaviour of the soils is limited to overconsolidated fine-grained clays

and those are mostly cross-anisotropic. Hence, in this chapter the emphasis is mostly put on

the description of the cross-anisotropy.

(a)

isotropy: cross-anisotropy: orthotropy:

(b) (c)

Fig. 3.3: Schematic description of a isotropic, cross-anisotropic and orthotropic materials. Soil properties remain un-

changed in terms of: a) isotropy - regardless of axis orientation, b) cross-anisotropy - symmetric about normal to plane

of isotropy, c) orthotropy - for the mirroring axes, after [118]
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3.1 Inherent and stress-induced anisotropy

Two types of anisotropy in natural soil deposits can be distinguished: inherent and stress-

induced. Geological processes, which influence soil microstructure and, consequently, the orien-

tation of the microstructure coordinate system, directly affect the so-called inherent anisotropy.

Typically, inherent anisotropy exhibits characteristics of cross-anisotropy, meaning that soil

properties remain unchanged about the axis normal to the plane of isotropy. This axis, denoted

by the unit vector v (Fig. 3.4), corresponds to the direction of material deposition. For over-

consolidated, fine-grained, stiff soils, the plane of isotropy is defined by the prevailing particle

arrangement, which creates distinctive bedding planes. As shown in Fig. 3.5, bedding planes

are usually formed horizontally, however, an inclination of the plane of isotropy is possible,

especially in older stiff clayey sediments. Inherent anisotropy depends only on the orientation

of the material microstructure and, in the case of heavily overconsolidated natural clays, re-

mains constant and insensitive to significant changes in stresses and strains. Reconstituted

state after tunnellinginitial state

Fig. 3.4: The definition of axes in cross-anisotropic natural soil shown for the example of tunnel drilling. The geometrical

axes (x1, x2) corresponds to material coordinate system representing plane of isotropy (h) and axis of symmetry (v,

v), respectively. The components of principal stress σi and principal stress axes directions nσi
change due to unloading,

after [46]
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(a) (b)

Fig. 3.5: Distinctive layered particle arrangement corresponding to a material’s plane of isotropy: a) horizontal bedding

planes of a boulder clay, own source, b) inclined bedding planes of a boulder clay in Gutio mine, own source

and slightly overconsolidated soils may undergo microstructural changes during extensive, ir-

reversible strains, hence, in this instance, the anisotropy of the microstructure may evolve

[40, 47, 108]. Pure inherent anisotropic behaviour of soil can be properly measured only under

isotropic stress conditions, as the stress-controlled component of anisotropy is deactivated.

Stress-induced anisotropy of soil material depends in part on stress history and its in situ

state. The most common indicator of the initial in situ stress state is denoted as the coefficient

of earth pressure at rest K0. It describes the relationship between horizontal effective stress

component and a vertical one: K0 = σh

σv
. Soil material subjected to loading and unloading due

to geotechnical processes may experience enhancement of the stress-induced anisotropy as all

the values of principal stress components could be different and their rotation may occur.

Anisotropy of natural soils is rather complex as it includes the superposition of inherent

and stress-induced anisotropy. Its definition depends on three principal axes, as shown in Fig.

3.4. Geometrical coordinates xi are usually collinear with the direction of gravity. In this dis-

sertation, unless stated otherwise, axis x2 is determined as vertical. Microstructural axes xmi

correspond to prevailing particle arrangement of soil. In terms of horizontally distributed sed-

iment, the analysis is simplified as both geometrical and microstructure coordinate systems

align. Orientation of principle axes of stress nσi is independent in relation to microstructure

coordinates, and may rotate due to introduction of additional loads and undergoing geotechni-

cal engineering processes. Ultimately, the anisotropy of stiffness and strength depends on the

orientation of three axes: geometric, microstructural, and principal stress directions.
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3.2 Experimental evidence of mechanical anisotropy

Anisotropic behaviour of soils is especially noticeable in the range of small strains (soil stiffness)

and large strains (shear strength). Overconsolidated clays, with the prevailing particle arrange-

ment, are mostly anisotropic in terms of stiffness and strength. However, it is important to

mention that anisotropic stiffness tested in undrained conditions influences the stress paths, so

it also affects the undrained shear strength of a tested specimen [150]. Strength anisotropy can

also be evident for soft clays and sands but it is mostly due to its stress-induced component,

as it can develop in previously isotropic material subjected to plastic deformation and loading

[38]. Inherent anisotropy in sand depends on particle contacts and there have been reported

cases of sands showcasing cross-anisotropic fabric, e.g. [9, 126]. In rock mechanics, a material is

generally anisotropic in case of stiffness and strength, however, due to so-called planes of weak-

ness, induced by e.g. bedding planes or discontinuities, the the influence of strength anisotropy

seems to be especially important.

Laboratory testing of anisotropic properties of soils can be quite difficult, as it is required to

examine the sample in different directions. Hence, the advanced laboratory equipment is needed,

as well as, the specific testing procedures should be followed to properly obtain anisotropic

parameters. It could be very expensive and time consuming. However, as the importance of

anisotropic mechanical properties of soils has been recognised for numerous geotechnical engi-

neering cases e.g. [3, 4, 22, 83, 123, 138, 147, 179, 180], the need to properly define material

anisotropic properties has become evident.

3.2.1 Small-strain stiffness anisotropy

Soil stiffness can be tested either in situ or using high accuracy laboratory equipment. Schematic

examples of various small-strain stiffness surveying techniques are illustrated in Fig. 3.6. In the

case of field seismic analysis, wave propagation velocity of compressive and shear waves can

be measured with such methods: cross-hole, down-hole and CPTU seismic tests, whereas the

surface waves - Rayleigh waves - are used for Spectral Analysis of Surface Waves (SASW) and

Continuous Surface Wave System (CSWS) method [19, 40, 44, 107].

Compared to field investigations, laboratory testing is expensive, time consuming, complex

and additionally carries a risk of sample disturbance. Still, it provides more detailed data

of small-strain stiffness and its nonlinear degradation [19]. The small-strain stiffness of soils

is usually measured in laboratory environment by advanced triaxial devices, equipped with

seismic elements or local displacement transducers, a resonant column or a torsional shear

instrumentation [40, 47, 65, 146]. Determination of anisotropic small strain stiffness parameters
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Fig. 3.6: Schematic representation of the typical field (a-d) [19, 40, 44] and laboratory (e-h) [40, 47, 65, 146] seismic

tests: a) cross-hole, b) down-hole, c) seismic CPTU test, d) Continuous Surface Wave System (CSWS) - measured with

dispersive Rayleigh waves vR, e)resonant column, d)hollow cylinder apparatus, e-f) triaxial apparatus with displacement

transducers and bender elements, respectively

is, in the most cases, performed in the triaxial apparatus with seismic bender elements, which

are designed to measure the velocity of shear wave. The standard setup, shown in Fig. 3.7,

assumes a cross-anisotropic soil sample to be trimmed in the direction parallel to the symmetry

axis. The bender elements are oriented in such way that the polarization of the generated shear

wave corresponds to the plane of isotropy [85]. Generally, the bedding planes of an anisotropic

specimen in the triaxial device should be oriented horizontally or vertically, otherwise shear

deformation during the compression occurs [7] and the test cannot be classified as an element

test.
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Fig. 3.7: Examples of soil sample trimming and applicable shear wave velocity measurements, after [85]

Assuming cross-anisotropic characteristics of soil, in order to obtain the proper small-strain

behaviour description, five independent material constants are required. Most commonly used

parameter set contains: Young’s modulus in vertical direction Ev, Young’s modulus in horizontal

direction Eh, Poisson’s ratio due to the vertical stress on the horizontal strain νvh, Poisson’s

ratio due to the horizontal stress on the horizontal strain νhh and shear modulus in vertical

plane Gvh [103]. Due to the simplicity of, the subscript ()0, which specifies initial or small-strain

parameter values is here omitted. Overall, the determination of all five parameters from the

laboratory testing is very difficult, however it has been reported [52] that, using the triaxial

apparatus with multi-directional piezoelectric sensors installed, as illustrated in Fig. 3.8, it is

possible to obtain substitute set of five seismic stiffness parameters from one soil sample. The

stiffness matrix for such obtained parameters is as follows:






σ̇11

σ̇22

σ̇33

σ̇12

σ̇23

σ̇31







=




















Eoedh D23 Eoedh − 2Ghh 0 0 0

D23 Eoedv D23 0 0 0

Eoedh − 2Ghh D23 Eoedh 0 0 0

0 0 0 Gvh 0 0

0 0 0 0 Gvh 0

0 0 0 0 0 Ghh


























ε̇11

ε̇22

ε̇33

γ̇12

γ̇23

γ̇31







, (3.1)
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(a) (b) (c)

Fig. 3.8: Schematic representation of wave propagation velocity measurements using multi-directional piezoelectric

sensors: a) compressive waves, b) shear waves, c) oblique waves, after [52]

where Eoedh and Eoedv correspond to constrained oedometric moduli acquired from compressive

P-waves propagated in horizontal and vertical directions respectively, Gvh and Ghh are shear

moduli in vertical and horizontal planes accordingly using shear S-waves; stiffness component

D23 vastly depends on propagation velocity of oblique P-wave vθv. Both oedometric and shear

moduli can be calculated according to Eq. 2.20:

Eoedh = ρv2
h, Eoedv = ρv2

v, (3.2)

Ghh = ρv2
hh, Gvh = ρv2

vh, (3.3)

whereas the value of D23 can be obtained from the Stokoe solution [157, 158]:

vθv =

√

A−B

2ρ
, (3.4)

for which:

A = Eoedh sin2 θ + Eoedv cos2 θ +Gvh, (3.5)

B =
√

[(Eoedh −Gvh) sin2 θ − (Eoedv −Gvh) cos2 θ]2 + 4(D23 −Gvh)2 sin2 θ cos2 θ. (3.6)

Given seismic parameters in Eq. 3.1 the conversion to standard cross-anisotropic parameters

can be done as follows:
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Ev =
D2

23

Ghh − Eoedh

+ Eoedv, (3.7)

Eh =
4Ghh(D2

23 + (Ghh − Eoedh)Eoedv)

D2
23 − EoedhEoedv

, (3.8)

νhh =
D2

23 + 2GhhEoedv − EoedhEoedv

D2
23 − EoedhEoedv

, (3.9)

νvh =
D23

2(−Ghh + Eoedh)
. (3.10)

Following [58], three anisotropy coefficients, indicating the degree of soil inherent anisotropy,

has been proposed [108]:

αG =
Ghh

Gvh

, (3.11)

αE =
Eh

Ev

, (3.12)

αν =
νhh

νvh

, (3.13)

where Ghh is the shear modulus in the plane of isotropy:

Ghh =
Eh

2(1 − νhh)
. (3.14)

In terms of cross-anisotropy Gvh and Ghv are assumed equal, as confirmed by laboratory testing

shown in Fig. 3.9.

In addition to the anisotropy coefficients αG, αE, αν , two anisotropy exponents xGE and xGν

has been introduced, following the relations:

(a) (b)

Fig. 3.9: Relations of soil stiffness parameters in case of: a) Gault Clay, after [129], b) London Clay, after [85]



32 3 Anisotropy of soils

London Clay (2007)
London Clay (2011)
Gault Clay (2011)
Gault Clay (2000)
Boom Clay (2006)

London Clay (2011)
Gault Clay (2011)
Gault Clay (2000)
Boom Clay (2006)

London Clay (2007)

London Clay (2007)
London Clay (2011)
Gault Clay (2011)
Gault Clay (2000)
Boom Clay (2006)
Boom Clay - R (2006)
Bangkok Clay (2013)

(a)

o
r

(b)

Fig. 3.10: The overview [108] of the laboratory results of cross-anisotropic parameters conducted for different clays

[57, 100, 136, 140, 175]: a) the relation between the anisotropy exponent xGE and the mean stress p, b) Poisson’s ratio

in vertical and horizontal plane; due to the big data scatter it is impossible to determine the value of xGν

αG = αxGE

E , αG = αxGν
ν . (3.15)

Based on the overview of experimental tests on anisotropic stiffness parameters presented in

[108] and illustrated in Fig. 3.10, the average value of the exponent xGE is approximately 0.8.

The value of xGν is unknown, as the laboratory test results of νvh and νhh show a large scatter.

The joint effect of inherent and stress-induced anisotropy on initial soil stiffness can be

expressed [62] as:

G0ij = S(ij)F (e)(OCR)kp
(1−ni−nj)
ref σni

i σ
nj
j , (3.16)

for which, indexes i and j correspond to directions of seismic wave propagation and polarisa-

tion, respectively, and principal stresses σi, σj indicate the plane of measured soil stiffness G0ij

and S(ij) is dimensionless elastic stiffness coefficient. The function F (e) describes material void

ratio, material constant k is associated with plasticity index PI and overconsolidation ratio

(OCR), whereas ni and nj are the empirical exponents. Soil stiffness is calculated for refer-

ence mean pressure pref. This expression has been validated for numerous clayey soils [79]. In

another laboratory triaxial testing on the reconstituted clay [111], the samples were subjected

to isotropic (K0 = 1.0) and anisotropic (K0 6= 1.0) loading. For such paths, the shear moduli

were tested in the vertical and horizontal directions and the value of anisotropy coefficients αG

were calculated. Obtained values of αG differed based on the value of K0, clearly showing that

stress-induced anisotropy influences the shear moduli G0ij.
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The review of cross-anisotropic elastic parameters of reconstituted and natural stiff clays

based on the literature study is summarised in Tab. 3.1. The values of cross-anisotropy coeffi-

cients in the case of overconsolidated natural stiff clays tend to be greater than 1.0, meaning

that the soil stiffness is generally higher in the plane of isotropy corresponding to the direction

of the symmetry axis (Ghh > Gvh, Eh > Ev). However, it should be noted that stiffness mea-

sured in situ or under anisotropic stress conditions K0 6= 1.0 displays mixed situation of both

inherent and stress-induced anisotropy, as the pure microstructure effect can be measured un-

der isotropic stress state only. Poisson’s ratio is quite difficult to study experimentally, so there

is still a lack of high quality laboratory evidence on the coefficient αν . Contrary to common

knowledge on the isotropic Poisson’s ratios, in the case of cross-anisotropy, the negative values

of Poisson’s ratio are possible, especially in the case of νhh.

3.2.2 Shear strength anisotropy

Shear strength of soil and its anisotropic characteristics are particularly important in situations

where ground movement needs to be considered, such as slope stability problems. The loading,

unloading or reloading of the subsoil leads to the rotation of the principal stress directions.

The influence of principal stress rotation on shear strength parameters has been proven in e.g.

[11, 30, 96, 124]. Hence, strength anisotropy is tested with the regard to the angle α between

the direction of major principal stress σ1 and vertical direction.

Standard equipment used to determine shear strength anisotropy parameters is either triaxial

apparatus or hollow cylinder apparatus. In the case of triaxial apparatus, the sample can only

be tested for the α values being equal to 0◦ or 90◦, whereas for the HCA it is possible to test

sample at any α angle [178]. Fig. 3.11 illustrates the components of stress and strain in the

hollow cylinder apparatus. The values of the principal stress components σ1, σ2, σ3 and the

angle α can be controlled independently through the separate application of inner and outer

cell pressures, axial force and torque [68].

The relation between principal stress values is controlled by the intermediate principal stress

ratio b:

b =
σ2 − σ3

σ1 − σ3

. (3.17)

The b value varies from 0 to 1 where b = 0 is triaxial compression and b = 1 is triaxial extension.

In the case of the torsion shear test with the same inside and outside cell pressures, the b value

relates to the angle α such that [96]:

b = sin2 α. (3.18)
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Table 3.1: Review of laboratory results on cross-anisotropic elastic parameters of reconstituted and natural stiff clays.

Reference Soil Test αE νvh νhh αG Remark

[166] (1959) Ward et al. London Clay (N) TX 1.16 − 1.54 − − − K0 = 1.0

[11] (1975) Atkinson London Clay (N) PS, TX 2.0 0.19 0.0 1.9 K0 = 1.0

[66] (1997) Hight et al. London Clay (N) c-h,d-h,

HCA,TX,RC

0.95 − − 1.45 − 2.3 in situ,

K0 > 1.0

[66] (1997) Hight et al. Thanet Beds Clay (N) c-h,d-h,

HCA,TX,RC

0.9 − 1.1 − − 1.3 − 1.6 in situ,

K0 > 1.0

[129] (1997) Pennington et

al.

Gault Clay (N) TX+BE − − − 2.25 − 2.75 K0 = 2.1

[129] (1997) Pennington et

al.

Gault Clay (R) TX+BE − − − 1.3 − 1.6 K0 = 1.0

[85] (1998) Jovičic̀ & Coop London Clay (N) TX+BE − − − 1.5 − 1.6 K0 = 1.0

[85] (1998) Jovičic̀ & Coop London Clay (R) TX+BE − − − 1.4 − 1.5 K0 = 1.0

[92] (1999) Kuwano Kaolin (R) TX+BE − − − 1.75 − 2.0 K0 = 1.0

[100] (2000) Lings et al. Gault Clay (N) TX+BE,

TX+DT

3.97 0.00 −0.04 1.8 − 2.25 K0 = 2.0

[122] (2005) Nishimura London Clay (N) TX+BE, RC,

HC

1.9 − − 1.8 − 2.2 K0 = 1.0

[122] (2005) Nishimura London Clay (N) TX+BE,

RC,HC

1.9 − − 1.8 − 2.2 in situ,

K0 > 1.0

[175] (2005) Yamashita NSF Clay (R) TX+BE 1.4 − 2.0 − − 1.5 − 2.3 K0 = 1.0

[97] (2006) Landon &

DeGroot

Boston Blue Clay (N) BE − − − 1.68 unloaded

[136] (2006) Piriyakul Boom Clay (N) TX+BE − − − 1.4 − 1.6 K0 = 1.0

[136] (2006) Piriyakul Boom Clay (R) TX+BE − − − 1.2 − 1.5 K0 = 1.0

[136] (2006) Piriyakul Boom Clay (N) TX+BE+DT − 0.0 0.03 1.4 − 2.0 K0 = 2.0

[57] (2007) Gasparre et al. London Clay (N) TX+BE 1.5 − 2.8 0.1−0.25 −0.19 −

(−0.02)

1.8 − 2.2 in situ,

K0 > 1.0

[177] (2011) Yimsiri &

Soga

Gault Clay (N) TX+BE+DT 2.32 0.13 0.21 1.68 K0 = 1.0

[177] (2011) Yimsiri &

Soga

London Clay (N) TX+BE+DT 2.18 0.07 0.18 1.2 K0 = 1.0

[29] (2017) Brosse et al. Gault Clay (N) TX, HCA 3.13 − − 1.9 K0 = 1.8

[29] (2017) Brosse et al. Kimmeridge Clay (N) TX, HCA 2.4 − − 1.68 K0 =

1.7 − 1.8

[29] (2017) Brosse et al. Oxford Clay (N) TX, HCA 2.8 − − 2.3 K0 = 1.8

(N)/(R) - natural/reconstituted clay, TX - triaxial test, HC - hollow cylinder apparatus, RC - resonant column,

c-d/d-h - cross/down hole, BE - bender elements, PS - plane strain test, DT - displacement transducers, in situ - stress state
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Fig. 3.11: Components of stress and strain in hollow cylinder apparetus, after [68, 178]

The shape of the failure surface for cross-anisotropic material has been experimentally de-

termined in [2, 88, 89]. In Fig. 3.12 the shape of the failure surface, obtained from drained

true triaxial test, is shown for the example of the San Francisco Bay Mud. The experimental

data is shown on the octahedral plane, with three sectors distinguished based on the Lode

angle θ, sector I: θ ∈ [0◦, 60◦], sector II: θ ∈ [60◦, 120◦], sector III: θ ∈ [120◦, 180◦]. The results

were obtained with the control of the b value for each sector. Two triaxial compression tests

were conducted at angles θ = 0◦ and θ = 120◦ and two triaxial extension tests at θ = 90◦ and

θ = 180◦. Due to cross-anisotropic nature of the soil, it is assumed that the surface is symmetric

around the axis normal to the plane of isotropy, in this case inclined horizontally. The data

was compared to the isotropic Mohr-Coulomb and Lade [93] failure criteria. It is evident that

cross-anisotropy of the fabric influences the shear strength of a soil.

In rock mechanics anisotropy of rock masses is common. In fact, purely isotropic rocks rarely

occur and are regarded as exceptions [28]. At micro level, anisotropy is mainly influenced by a

material fabric, its schistosity, bedding, foliation and fissility [76, 162]. At macro scale, however,

the material anisotropy is depended on joints, so-called discontinuities, developed in rock mass.

In [71] the strength of jointed rocks is determined as completely relying on the degree of rock

interlocking. A rock material showcases a highly anisotropic behaviour if one set of joint is

considered. Alternatively, if at least three joint sets intersect each other, the strength of rock

is regarded as isotropic and homogenous.

Due to the general anisotropy of rock masses, the strength obtained from laboratory testing

should be referred to the angle β between the plane of weakness and the loading direction σ1.
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Fig. 3.12: Experimental failure surface obtained from the drained true triaxial tests conducted on the San Francisco

Bay Mud samples [2]. Three sectors have based on the Lode angle θ have been distinguished. Tests were controlled by

the value of the intermediate principal stress ratio b [95]

The values that are of the most interest are the maximum and the minimum rock strength. The

ratio between these extreme strength values is regarded as the maximum strength anisotropy

of a rock [139]:

Rc =
σc(max)

σc(min)

, (3.19)

where the Rc ratio refers to uniaxial compressive strength. As shown in Fig. 3.13, the uniaxial

compressive strength of a rock mass depends on the planes of weakness and β angle. The

maximum value of strength σc(max) is obtained when the loading direction is perpendicular

or parallel to the weakness plane (β(max) = 0◦, β(max) = 90◦), whereas the lowest strength is

reported to be reached for β(min) = 30◦ − 45◦, due to the additional shearing along the bedding

planes occurring.

Strength anisotropy of rocks can also be classified with the commonly used point-load

anisotropy index Iα, adopted by the International Society for Rock Mechanics [53]:

Iα =
Is(50)⊥

Is(50)‖

, (3.20)

where Is(50)⊥ and Is(50)‖ are the point-load strength indexes of a sample with bedding plane

orientation perpendicular and parallel to the load, respectively. The point-load index Is(50) is

described as:

Is(50) =
P

D2
, (3.21)
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Fig. 3.13: The theoretical uniaxial compressive strength σc of a rock mass depending on the plane of weakness and the

angle β. The maximum values of the compressive strength are obtained when βmax = 0◦ or β(max) = 90◦, the minimum

strength when β(min) = 30◦ − 45◦, after [139]

where P is a load needed for the failure to occur, and D is a core diameter of a specimen. A

standard size of the sample diameter has been adopted to be D = 50 mm. As shown in Fig.

3.14, when the sample, with the foliation distribution perpendicular to the load, is tested, the

obtained Is(50) index is at its maximum. The minimum value of Is(50) is found for the sample

with bedding planes oriented parallel to the loading, due to splitting that occurs along the

plane of weakness.

The classification of rock masses based on their anisotropic ratioRc and point load anisotropy

index Iα is shown in Tab. 3.2. Low strength anisotropy can be attributed to metamorphic rocks

of a medium irregular grain size. Fine-grained rocks with the distinctive bedding planes are

usually highly anisotropic.

Table 3.2: The classification of strength anisotropy for various rock masses, after [161, 162].

Anisotropy classification Rock types Anisotropy ratio Rc Point load anisotropy index Iα

Quasi-isotropic Hornfels, granulite, quartzite 1.0 − 1.1 < 1.1

Fairly anisotropic Mylonite, shales, granitic gneiss 1.1 − 2.0 1.1 − 1.5

Moderately anisotropic Quartz schist, schistose gneiss 2.0 − 4.0 1.5 − 2.5

Highly anisotropic Hornblende schist, mica schist 4.0 − 6.0 2.5 − 3.5

Very highly anisotropic Phyllite, slate > 6.0 > 3.5
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Fig. 3.14: Point-load strength index of three rocks with the regard to the angle α between horizontal core axis and the

plane of weakness, after [1]
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Constitutive modelling of anisotropy

It has become both popular and convenient to analyse geomechanical initial boundary value

problems using numerical methods. In practice, material models are typically implemented

within the finite element method (FEM), where soil is treated as a continuum. The use of finite

element codes enables reliable analysis of complex multi-phase engineering problems involving

the interaction between geotechnical structures and the soil. Numerical simulations are also

valuable for calibrating the material parameters of advanced constitutive models by comparing

element test results with laboratory data.

Nowadays, available commercial FE computer programs include a wide selection of constitu-

tive models designed to simulate different aspects of soil behaviour (barotropy, stiffness strain

degradation, softening, creep, shear strength, anisotropy). However, the choice of the proper

material model needs to be done by a designer, based on the experience and knowledge, taking

into consideration such factors as: structural problem or soil material parameters availabil-

ity. For example, applying basic Mohr-Coulomb model for normally consolidated clay deposits

could potentially generate higher undrained strength of the soil that it is in reality. Moreover,

yielding effects of soils, which are important to take into account in slope or foundation stability

analyses, may be not crucial for structural designing where prefailure soil behaviour is generally

more important.

Commercial computational programmes, by default, offer only the isotropic material models.

Numerical implementation of isotropic models is simpler and more straightforward, compared

to complex anisotropic and orthotropic models, as parameter directional dependency does not

need to be taken into account. In the case of isotropic linear elastic modelling, only two material

constants are required (e.g. Young’s modulus E and Poisson’s ratio ν or bulk modulus K and

shear modulus G).

In comparison, to define cross-anisotropic material, five soil independent parameters are

needed, or in the case of the orthotropic material - nine independent constants. The inclusion of
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anisotropic soil stiffness or strength in the material model previously developed as isotropic may

be quite complex. It is due to the fact that isotropic models are often implemented considering

three-dimensional stress or strain invariants space and not six-dimensional stress or strain space

which is needed in the case of anisotropy. Due to convenience, simplicity and also costs of soil

laboratory testing, isotropic models are a preferred choice.

However, the experimental evidence has shown that soils, especially overconsolidated fine-

grained soils, tend to be highly anisotropic (see Sec. 3.2). The importance of anisotropy has

been proven in numerous analyses of practical geotechnical cases, especially including the tun-

nelling and excavation problems. For example, Fig. 4.1 compares settlement troughs obtained

from numerical simulations with those measured in the field. For the isotropic linear elastic

model and the two isotropic nonlinear models L4 and J4, the simulated settlement troughs are

excessively wide and shallow. In contrast, the soil response is captured more accurately with

the nonlinear models AJ4i and AJ4ii, which incorporate stiffness anisotropy. It proves that, ne-

glecting anisotropic behaviour in numerical modelling may result in unrealistic, as compared to

further field monitoring, deformation and may lead to potential structural problems, especially

in the case of tunnel drilling simulations in urban areas.
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Fig. 4.1: Surface settlement profiles obtained from the numerical simulation of a tunnel drilling problem [4] with the

use of a) isotropic material models, b) anisotropic material models. The soil response was compared to the field data

[156]. In the case of isotropic model analysis, the settlement troughs are too shallow and too wide compared to the field

data. With the use of anisotropic material models, it was possible to improve soil response
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The elements of the constitutive model, which need to be taken into consideration to simulate

properly anisotropic soil behaviour, are stiffness nonlinearity (barotropy and strain degrada-

tion), inherent anisotropy, stress-induced anisotropy and shear strength criterion.

4.1 Small-strain

4.1.1 Linear elastic models

The most basic form of modelling elastic anisotropy is to use linear elastic orthotropy. Stiffness

matrix, written in 6 × 6 Voigt notation, contains 36 independent stiffness component. Taking

into account the Cauchy stress tensor symmetry the number of components is reduced to 21.

However, for most materials, anisotropy is limited due to assumed planes of symmetry. Hence,

the number of needed parameters can be reduced. For the orthotropic material description the

Hooke’s law compliance matrix can be written as:




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. (4.1)

To obtain a stable material description, the following conditions must be fulfilled [118]:

Ei, Gij > 0, (4.2)

(νij)
2 <

Ei

Ej

, (4.3)

1

γ
= 1 − ν12ν21 − ν13ν31 − ν23ν32 − ν12ν23ν31 − ν13ν21ν32 and γ > 0. (4.4)

It is important to note that the Poisson’s ratio components are not interchangeable (νij 6= νji)

but, since a orthotropic material has three orthogonal planes of symmetry, the expression
νij

Ei
= νji

Ej
is true. Taking this into account, the stress rate-strain rate relation can be reduced to

nine independent parameters, as shown in Fig. 4.2. Those elastic constants are Young’s moduli:

E1, E2, E3, shear moduli G12, G23, G13 and Poisson’s ratio ν12, ν23, ν13.
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Fig. 4.2: Elastic constants in orthotropic material, nine independent parameters: E1, E2, E3, G12, G23, G13, ν12, ν23,

ν13, after [171]

The influence of the individual orthotropic parameters on soil stiffness can be visualised with

the use of the orientation distribution function [165]:

%−1C(Ct,n) = (ninjC
t
ijklnknl)

−1. (4.5)

The result gives a scalar value of a Young’s modulus in the direction described by the unit vector

n and it is related to the fourth-order compliance tensor Ct. The spherical plots of directional

distribution of stiffness are shown in Fig. 4.3. In Fig. 4.3a the values of the parameters do not

depend on the direction, hence the obtained response corresponds to the Hooke’s law isotropic

elastic stiffness. The the influence of orthotropic parameters on soil stiffness is tested by the

change of the parameter value in the relation to the initial isotropic state, as shown for the

Figs. 4.3(b-d). All nine parameters affect the obtained soil stiffness. For example, if the value of
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Fig. 4.3: Spherical plots illustrating the influence of the nine elastic constants in orthotropic material on the dimensional

distribution of stiffness: a) isotropic state, b) change of Young’s modulus Ei c) change of shear modulus Gij , d) change

of Poisson’s ratio νij
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Ei increases, then the stiffness distribution is larger along the corresponding xi axis. Similarly,

the changes of Gij and νij are noticeable on ij plane.

In the case of cross-anisotropy, the material model can be described using five independent

elastic constants, as shown in Fig. 4.4. The corresponding stress rate-strain rate relationship is

expressed as:

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. (4.6)

Assuming a standard horizontal position of the plane of isotropy, the geometric axis xi coincides

with the microstructural axis xmi. Under this assumption, the stiffness parameters can be

directly related to values measured in the vertical and horizontal directions. The definitions of

the individual material constants are also illustrated in Fig. 4.4.

In order to fulfil thermodynamic laws, elastic strain energy must be positive. In this terms

the following limits must be satisfied [131]:

Eh, Ev, Gvh ≥ 0, (4.7)

−1 ≤ νhh ≤ 1, (4.8)

Ev

Eh

(1 − νhh) − 2ν2
vh ≥ 0, (4.9)

Eh

Ev

(1 − νhh) − 2ν2
hv ≥ 0. (4.10)

The influence of five cross-anisotropic elastic parameters on directional distribution of stiff-

ness is shown in Fig. 4.5 in a form of spherical plots. The coordinate system is defined so the

axis x2 is vertical. The parameters are tested analogously to the orthotropic elastic constants

from Fig. 4.3. The seemingly no influence of Poisson’s ratio νhh on the dimensional distribution

of stiffness results from the function %−1C. The expression reduces in a way that is completely

not depended on νhh.

It is quite uncommon to obtain all five elastic parameters of cross-anisotropic materials by

the means of standard laboratory testing (see Tab. 3.1). Graham and Houlsby [58] proposed an

alternative in the form of simplified set of three elastic parameters: modified Young’s modulus
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Fig. 4.4: Elastic constants in cross-anisotropic material, five independent parameters: Ev, Eh, Gvh, νvh, νhh, after

[44, 171]

E∗, modified Poisson’s ratio ν∗ and coefficient of cross-anisotropy α = αG. This method is

based on an assumption of the following correlations:

E∗ = Ev, ν∗ = νhh, α =

√

Eh

Ev

=
Ghh

Gvh

=
νhh

νvh

. (4.11)

In the regard of, mentioned in Eq. 3.15, anisotropy exponents xGE and xGν , the relation

proposed by Graham and Houlsby gives them the values: xGE = 0.5 and xGν = 1.0. The

remaining of cross-anisotropic parameters can be determined as follows:

Eh = α2E∗, (4.12)

Gvh = α
E∗

2(1 + ν∗)
(4.13)
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νvh =
ν∗

α
. (4.14)

The five-parameter strain rate-stress rate including cross-anisotropic compliance matrix re-

duced to Graham-Houlsby three-parameter description is denoted as:
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Fig. 4.5: Spherical plots illustrating the influence of the elastic constants in cross-anisotropic material on the dimensional

distribution of stiffness: a) isotropic state, b) change of Young’s moduli Eh and Ev, c) change of shear modulus Gvh, d)

change of Poisson’s ratio νhh and νvh
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(a) (b) (c)

(d)

isotropic state

Fig. 4.6: Spherical plots illustrating the influence of the elastic constants in three parameter cross-anisotropic material

on the dimensional distribution of stiffness: a) isotropic state, b) change of the modified Young’s modulus E∗, c) change

of the modified Poisson’s ratio ν∗, d) change of the anisotropy coefficient α

It is unwise to treat parameters E∗ and ν∗ as isotropic, and then implement anisotropy

with the use of α coefficient. If the value of α is different than 1.0, only Young’s modulus

Ev and Poisson’s ratio νhh stay constant. The overall soil stiffness is different, as the values

of the remaining cross-anisotropic parameters Eh, Gvh and νvh change in accordance to Eq.

(4.12-4.14). This is shown in Fig. 4.6. The sphere, obtained in Fig. 4.6b, is enlarged in a

constant manner in every direction, as compared to the isotropic case. Since the anisotropy

factor α = 1.0, the Graham-Houlsby material model assumes the Hooke’s law isotropic stiffness

properties. The modified Poisson’s ratio ν∗ corresponds to νhh, so again there is no influence

of this parameter on the dimensional distribution function %−1C. In Fig. 4.6d the impact of the

anisotropy coefficient is shown, for the cases of α = 0.7, α = 1.0 and α = 1.5. The stiffness

distribution in vertical direction remains the same for each example, however stiffness changes
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notably in horizonal direction. If α < 1.0, then Ev > Eh, hence the volume of the sphere

decreases along the plane of isotropy. The situation is reversed when α > 1.0.

4.1.2 Nonlinear models

Models described in Chapter 2 are sensitive to stress changes but are isotropic in their nature.

The most straightforward way of obtaining a model that is both nonlinear and anisotropic

would be the implementation of inherent anisotropy into a nonlinear isotropic formulation.

A microstructure of a cross-anisotropic material can be defined by the second-order tensor

M, obtained from the dyadic product [24]:

M = v ⊗ v or Mij = vi ⊗ vj. (4.16)

A plane of isotropy is defined with the use of the unit vector v. This vector determines the

symmetry axis of a cross-anisotropic material.

The general approach that introduces microstructure tensor into a nonlinear formulation

was proposed in [23, 24]. It operates based on the theory of tensor functions. If a scalar is a

function of two symmetric tensors, then it can be described as a function of three different

types of scalar invariants. Hence, for any function f(σ,M), these are the invariants of stress,

microstructure and mixed stress-microstructure, respectively:

tr σ, tr σ
2, tr σ

3, (4.17)

tr M, tr M2, tr M3, (4.18)

tr (σ · M), tr (σ2 · M), tr (σ · M2), tr (σ2 · M2). (4.19)

Assuming a cross-anisotropic material, all microstructure invariants (Eq. 4.18) are the same

M = M2 = M3. In order to incorporate the influence of microstructure into this function, joint

invariants of stress and microstructure tr (σ · M) and tr (σ2 · M) are sufficient.

A general form of a elastic potential that includes stress and microstructure tensors can be

expressed as follows:

W (σ,M) = W ([ξ1tr σ + ξ2tr (σ · M)], [ξ3tr σ
2 + ξ4tr (σ2 · M)], tr σ

3), (4.20)

where ξi are scalar multipliers. The symbol () denotes functions of mixed stress-microstructure

invariants.

In literature one can find various material models capable of simulating anisotropic stiffness,

e.g. [4, 16, 55]. A general method showing the implementation of inherent anisotropy into

hyperelasticity has been presented in [74] and later validated in [8].



4.1 Small-strain 49

4.1.3 Stiffness scaling

A quite interesting method of introducing inherent cross-anisotropy into arbitrary isotropic

model is proposed by Niemunis and Staszewska [121]. In this approach, cross-anisotropic char-

acteristics of soil microstructure is superimposed on isotropic elastic stiffness tensor Diso by

special scaling method. Stiffness tensor D×A including inherent cross-anisotropic component is

obtained from the following operation:

D×A = QT : Diso : Q, (4.21)

where Q is anisotropy tensor used to scale isotropic stiffness tensor Diso. Anisotropy tensor

Q is obtained based on soil sedimentation direction m = [0, 0, 1] and additional constants

which relate to the coefficients of cross-anisotropy. Components of Q tensor do not depend

on strain, stress or isotropic material parameters. Hence, it represents a pure cross-anisotropic

characteristics.

Three types of cross-anisotropic scaling of isotropic stiffness tensor are described, denoted as

×A1, ×A2, ×A3. The first is delivering the cross-anisotropic stiffness as in the Graham-Houlsby

model [58]. The third is just to show impossibility of obtaining three independent coefficient of

cross-anisotropy via proposed scaling. However, the second one (×A2) is interesting and worth

of application. The scaling of ×A2 is proposed with two anisotropy constants α = αG and β:

α = αG = α
β

2

E = αβ
ν , (4.22)

meaning the β parameter is referred to anisotropic exponents [108] as follows:

xGE =
β

2
and xGν = β. (4.23)

If β = 1.0, then the obtained expression reduces to ×A1 scaling corresponding to Graham-

Houlsby model [58].

The ×A2 anisotropy tensor Q is defined as:

Qijkl = µikµjl + cIijlk and µij = aδij + bMij. (4.24)

The functions a, b, c depend on the cross-anisotropic parameters αG and β, while the mi-

crostructure tensor Mij is obtained from the dyadic product (see Eq. 4.16). Consequently, the

anisotropy tensor Q can be expressed as a function Q(αG, β,M). The value of parameter β

have been estimated, taking into account recent literature evidence [108]. In particular, for stiff

clays, parameter β tends to remain constant, with xGE ≈ 0.8 leading to β ≈ 1.6.
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The main advantage of the stiffness scaling method is that the pure cross-anisotropy in a form

of ×A2 can be applied to any stiffness or compliance matrix without violating thermodynamic

laws. Hence, it is easy to implement it into any existing constitutive models. For example, the

Hardening Soil model, refined with the Brick-type stiffness degradation (HSBrick), has been

further extended to account for stiffness cross-anisotropy. A detailed parametric analysis and

validation of the model are provided in [45].

4.2 Shear strength anisotropy

The classification of the various anisotropic failure criteria was proposed in [50]. The described

models were divided into 3 groups: continuous, discontinuous and empirical. In the case of

empirical models, the parameters used in basic isotropic criteria, are described as a function of

the loading orientation, calibrated in a way that they fit the experimental data. They are not

formulated based on any physical or mathematical laws, hence it is not recommended to use

them.

For discontinuous weakness plane or critical plane models, a material is typically assumed

as isotropic at the micro scale, however, on macro level discontinuities, that develop in a body,

are also analysed. A failure can happen in the rock matrix, due to the generation of a possible

failure plane, or along the predetermined joints. As such two distinct criteria for the material

and the joints should be used. This approach is used in so-called Jointed-Rock Model that is

available in various commercial geotechnical computational programmes.

In the case of continuous models, strength anisotropy can be introduced into a material model

through the kinematic hardening. It allows to modify the shape, size and movement of the yield

surface, which is sensitive to the change of stress paths, as well as to the rotation of the principal

stresses. The examples of such models were developed at MIT for normally consolidated clays

and sands [130] and overconsolidated clays [167]. Overall, this type of method could be quite

complicated to formulate, as it operates strictly within the stress space and is depended on

multiple parameters, which are not easily tested in laboratory environment. In addition, these

models do not incorporate the influence of the anisotropic microstructure on strength.

The implementation of inherent anisotropy into a failure criterion may be conducted with

the use of mixed invariants method, described in Sec. 4.1.2. The anisotropic failure criterion

was proposed by Pietruszczak and Mróz [133, 134]. Here, the microstructure tensor a takes the

following form:

aij = a1m
(1)
ij + a2m

(2)
ij + a3m

(3)
ij , (4.25)
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where m
(α)
ij = e

(α)
i e

(α)
j are structure-oriented tensors defined at the respective directions α =

1, 2, 3. The description of the coordinate system is shown in Fig. 4.7. The loading orientation

is determined by a unit vector l, specified with the respect to the principal directions e(α):

li =
Li√
LkLk

, (4.26)

where L is a generalised loading vector:

Li = L1e
(1)
i + L2e

(2)
i + L3e

(3)
i . (4.27)

The magnitudes of the individual traction moduli are defined as follows:

L1 =
√

σ2
11 + σ2

12 + σ2
13, L2 =

√

σ2
12 + σ2

22 + σ2
23, L3 =

√

σ2
13 + σ2

23 + σ2
33. (4.28)

The failure criterion for anisotropic materials is formulated as:

F (σ, a) = η = η0(1 +Ωijlilj). (4.29)

The parameter η is a description of the three-dimensional directional distribution of a scalar.

In this case η0 is simply an isotropic value of η. Tensor Ω defines the deviatoric part of the

microstructure tensor a:

Ωij =

(

aij − 1
3
δijakk

)

(
1
3
akk

) . (4.30)

This tensor is symmetric and traceless, meaning Ωkk = 0. Given an isotropic material, the

tensor Ω = 0, so η = η0 = const. To describe an orthotropic fabric two distinct eigenvalues are

needed. However, for the case of cross-anisotropy only one scalar value is enough for the proper

material definition. Assuming a horizontal bedding plane distribution (x2 is vertical, x1 = x3

are horizontal), the tensor Ω takes the following form:

Fig. 4.7: Definition of principal axes and loading direction components, after [134, 95]
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Ωij =









−Ωv

2
0 0

0 Ωv 0

0 0 −Ωv

2









. (4.31)

For such material the strength in the plane of isotropy is constant, hence Ω1 = Ω3. Since

Ω1 +Ω2 +Ω3 = 0 and l21 + l22 + l23 = 1, the failure criterion for a cross-anisotropic fabric can be

written as:

η = η0

[

1 +
Ωv

2
(1 − 3l22)

]

. (4.32)

In Fig. 4.8 the spherical plots of the directional distribution of a cross-anisotropic material

and the influence of Ωv are shown. As previously mentioned, if the value of Ωv = 0, then the soil

response is isotropic. However, as Ωv increases, the anisotropic properties of the yield surface

get more prominent.

The undeniable advantage of this model is the fact that the directional distribution function

can be implemented in any model and individual parameters can be made direction-dependent.

For example, the influence of cross-anisotropic fabric on strength was introduced to the isotropic

Lade criterion [94, 95]:

f =

(

I3
1

I3

− 27

)(

I1

pa

)m

= η0

[

1 +Ω1(1 − 3l22)
]

, (4.33)
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Fig. 4.8: Spherical plots illustrating the distribution of cross-anisotropic material. The shape of the spheres is depended

on the value of Ωv. The bigger the value of Ωv the larger the spacial variation form the isotropic state that is attained

when Ωv = 0



4.2 Shear strength anisotropy 53

where I1 I3 are the stress tensor invariants, pa denotes an atmospheric pressure expressed with

the same unit as the tensor invariant I1 and exponent m depends on the type and the density

of a given soil.

Additionally, this approach can incorporated into a multi-laminate framework. In [135] the

tangent of the internal friction angle m = tanφ and effective cohesion c of Mohr-Coulomb

failure criterion were assumed anisotropic:

F (σ) = τ −mσ − c = 0, where m = m0(1 +Ωm
ij lilj) and c = c0(1 +Ωc

ijlilj). (4.34)

The scaling method, described in Sec. 4.1.3, can also be implemented into any isotropic yield

criterion F (σ) ≤ 0, by incorporating scaling tensor Q into stress in a following way:

F (σ)×A = F (Qσ). (4.35)

Fig. 4.9 illustrates the application of this method to the Matsuoka-Nakai yield surface [106],

defined in Eq. 5.72. Scaling is performed according to approach ×A1, where:

Qijkl = µikµjl, and µij =
√
αδij + (1 −

√
α)Mij. (4.36)

Parameter α is defined in Eq. 4.22, based on the Graham-Houlsby model [58].

The isotropic surface (α = 1.0) is compared with two anisotropic cases (α = 0.8 and α = 1.2).

For the anisotropic surfaces, the strength parameters are adjusted in such way that the response

Fig. 4.9: The comparison between isotropic Matsuoka-Nakai yield surface [106] and two anisotropic surfaces obtained

with ×A1 scaling procedure [121]. The strength parameters are adjusted such that the response under triaxial compression

remains unchanged. The approximated values of the scaled φ and c parameters are provided in the table
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under triaxial compression remains unchanged. The corresponding modified values are provided

in Fig. 4.9.

Unlike stiffness anisotropy, the strength in horizontal direction gets higher along with the

decreasing value of the α parameter.



5

Anisotropic hyperelastic-plastic model for stiff

soils

In this section the anisotropic hyperelastic-plastic (AHEBrick) constitutive model is described.

It was first introduced in [44] and has since been the subject of detailed analysis, refinement,

and validation, e.g. [46, 47, 101]. The model accounts for both inherent and stress-induced

anisotropy of stiffness, as well as barotropy. It can also properly model stiffness changes due to

stress history. Currently, only stiffness anisotropy has been implemented. However, the attempts

are made to introduce strength anisotropy with the use of scaling method, presented in [121].

The model description is divided into three sections depending on the strain range. Stiffness

anisotropy is introduced within the elastic part. It is then propagated to the intermediate strain

range. Here, the procedure of stiffness degradation due to strain is described. Lastly, the applied

shear strength criterion is presented. The model is implemented in the commercial FE code

[26]. Its application is explained in a form of a simplified algorithm.

5.1 Small-strain range: hyperelastic part

In order to implement inherent cross-anisotropy of microstructure, the symmetry axis normal to

the plane of isotropy, defined by unit vector v, needs to be introduced. Its geometric description,

based on two spherical coordinates θ and ϕ, is shown in Fig. 5.1. Depending on the definition

of the geometrical axes xi, the Cartesian coordinates of v are:

v = [sin θ sinϕ, cos θ, sin θ cosϕ]T , (5.1)

v = [sin θ cosϕ, sin θ sinϕ, cos θ]T . (5.2)

In the commercial FE code [26], the vertical axis is defined as x2 in plane strain and axisym-

metric conditions and as x3 for the three dimensional case. Hence, the definition of second-order

microstructure tensors M, which components are calculated from the dyadic product (Eq. 4.16),

is as follows:
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Fig. 5.1: The position of the symmetry axis normal to the plane of isotropy, defined by the unit vector v, depending on

the geometric system xi and spherical coordinates ϕ, θ
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, (5.3)
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, (5.4)

where the respective unit vectors v are presented in Eqs. 5.1-5.2.

If the plane of isotropy is horizontally oriented, the unit vector v is in vertical direction

(θ = 0◦), which leads to:

v = [0, 1, 0]T , v = [0, 0, 1]T , (5.5)

and corresponding microstructure tensors M:

M =





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


0 0 0

0 1 0

0 0 0


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
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0 0 0

0 0 0

0 0 1




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

. (5.6)

The base for the anisotropic hyperelastic kernel is the isotropic model proposed by Vermeer

[163], see Eq. 2.14. It is a function of one stress invariant Q. As described in Sec. 4.2, in
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order to incorporate inherent anisotropy into hyperelastic potential, joint invariant of stress

and microstructure can be used [23, 24]:

QM(σ,M) =
1

2
tr (σ2 · M) =

1

2
Mabσbcσca. (5.7)

Hence, analogously to Eq. 4.20, mixed invariant Q is obtained based on Q and QM:

Q(σ,M) = c1Q+ c2QM =
1

2

mab
︷ ︸︸ ︷

(c1δij + c2Mab)σbcσca =
1

2
mabσbcσca. (5.8)

Parameters c1 and c2 are the new material constants. Their influence is described in depth later

in this chapter.

To acquire the modified hyperelastic potential, that is able to simulate both stress-induced

and inherent anisotropy, the stress invariant Q is simply replaced by the mixed expression Q:

W (σ,M) =
3p1−β

ref

2Gref
0 (1 + β)

(
2

3
Q(σ,M)

) 1+β

2

. (5.9)

By calculating the patrial derivative of the mixed stress-microstructure invariant Q:

∂Q(σ,M)

∂σij

=
1

2
(σajmai + σbimbj), (5.10)

secant stress-strain relation is obtained:

εe
ij =

∂W (σ,M)

∂σij

=
1

4G0

(σajmai + σbimbj), (5.11)

where

G0 = Gref
0





√
2
3
Q(σ,M)

pref





1−β

. (5.12)

Finally, the second stress derivative of the modified hyperelastic potential W (σ,M) gives

the following tangent compliance tensor Ct:

Ct
ijkl =

∂2W (σ,M)

∂σij∂σkl

=
1

4G0

Aijkl, (5.13)

for which

Aijkl = (δjlmki + δilmjk)symm − (1 − β)
(σalmak + σbkmbl)(σajmai + σbimbj)

4Q
(5.14)

and
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(mkiδjl +mjkδil)
symm =

1

2
(mkiδjl +mliδjk +mjkδil +mljδik). (5.15)

For the detailed description of all operations conducted in order to calculate tangent com-

pliance matrix from the hyperelastic potential, see Appendix A.1.

In numerical implementation tangent stiffness matrix Dt is needed. Hence, the tangent

stiffness matrix is obtained by analytical or numerical inversion of the tangent compliance Ct,

transformed from 4-th order tensor to the Voigt notation [117].

The basic set of the model input stiffness parameters are: Gref
0 , c1, c2, β and pref. The level

of the barotropy and stress-induced anisotropy of soil is controlled by the constant c1. The

influence of the c1 parameter on the stress-stiffness relation is conduced as a proportional

stiffness scaling. It has been tested that the impact of c1 on the stiffness directional dependency

is negligible and its magnitude is mostly dependent on the parameter c2. It is shown in Fig.

5.2 as an elastic distribution of the potential W (σ,M). In order to test the pure influence of c1

on stiffness, the condition c2 = 0 is assumed. Isolines represent the same value of the potential

W (σ,M) and are strictly related to the stiffness directional distribution. If the isolines form

circles and the stress distances between the subsequent isolines are the same in every direction,

then the material is isotropic. As it can be noticed, the change of c1 value is responsible for

the intensity of barotropy but does not induce any anisotropic response in a soil. Hence, due to

the simplicity, the constant value c1 = 1.0 has been established, so it has no influence on the

stiffness anisotropy.

The parameter c2 is responsible for the introduction of the stiffness inherent cross-anisotropy.

Given c1 = 1.0, if c2 > 0, then the stiffness distribution is higher in the direction defined by the

0.01
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0.01

0.05

0.01
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Fig. 5.2: Isolines of the constant values of the potential function W (σ,M) in the triaxial plane related to c1 parameter.

Negligible influence on stiffness anisotropy has been noted
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Fig. 5.3: Elastic strain distribution of Eq. 5.11 in triaxial stress plane. The influence of c2 is manifested as the stress

distance of the ||∂W/∂σ|| isolines along the vector streams directions [∂W/∂σh, ∂W/∂σv]T

plane of isotropy and corresponds to the anisotropy coefficients in a following way: αG, αE > 1.0.

In case of the negative value of c2, the condition αG, αE < 1.0 is true. However, if c2 = 0, then

the component of inherent anisotropy deactivates and the hyperelastic potential is regained in

its isotropic form in Eq. 2.14.

The influence of the parameter c2 on the elastic strain distribution, defined in Eq. 5.11, is

presented in Fig. 5.3. Three different values of c2, corresponding to the conditions αG < 1.0,

αG = 1.0 and αG > 1.0, are considered. For all cases, c1 = 1.0 and the reference shear modulus

Gref
vh is kept constant. The distances between ||∂W/∂σ|| isolines correspond to the directional

stiffness. At the isotropic case, the isolines form uniform response. However, if the condition

c2 6= 1.0 is considered, the span between the constant ||∂W/∂σ|| values can be higher along

the vertical (c2 < 1.0) or horizontal (c2 > 1.0) axis.

The parameter β controls the order of stiffness-stress dependency. It can be related to the

power law (Eq. 2.4) exponent m in a way that m = 1 − β. At the same time this constant is

strictly dependent on the isotropic Poisson’s ratio (see Eq. 2.15).

Due to the direct coupling between m and ν paramters, the application of the described

model is limited. Based on the Eq. 2.17, to avoid the infinite stiffness value, the following

condition β 6= 0 must be satisfied. However, if β 6= 0, then m 6= 1.0, meaning it is impossible

to introduce the linear relation between stress and stiffness, which is apparent in normally

consolidated clays. As such, the model is applicable for fine-grained overconsolidated clays and

granular soils, for which m is reported to be in the range of 0.3 − 0.7 [19].

In Fig. 5.4 the relation between the parameter β, the power law exponent m and Poisson’s

ratio ν is shown. For the marked range of analysed β and m constants, the limit values of
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(a) (b)

Fig. 5.4: The coupling between parameter β, the stress-stiffness dependency parameter m and isotropic Hooke’s law

Poisson’s ratio ν: (a) the direct relationship between β and m, (b) the response envelopes of the isotropic Vermeer’s

model [163] for β = 0.3, 0.5, 0.7 and K = 0.5, 1.0, 2.0

Poisson’s ratio are ν = 0.11 and ν = 0.3. Considering the relation β = m = 0.5, the obtained

Poisson’s ratio is then ν = 0.2. The response envelopes presented in Fig. 5.4b correspond to

the aforementioned values of the β parameter. The elongation of the obtained ellipses along

the K = const path strictly depends on β. It shows that this constant can also influence the

distribution of stiffness in a stress space.

The initial soil stiffness is determined with the reference shear modulus Gref
0 . However, this

is an isotropic parameter. Given the material that is anisotropic in its nature, the proper

estimation of Gref
0 is very difficult. Hence, it would be most optimal to refer the aforementioned

set of elastic constants to the parameters that can be tested in laboratory, e.g. the basic cross-

anisotropic stiffness moduli: Gvh, Ghh, Ev, Eh and Poisson’s ratios: νvh, νhh.

5.1.1 Inherent anisotropy at isotropic stress state

The value of Gref
0 is equal to Gref

vh only if the considered material is isotropic (αG = 1.0). Oth-

erwise, the proper relation between model constants and stiffness parameters can be obtained

from the study of stress and strain increments related to the compliance tensor from Eq. 5.13:

∆ε
e = Ct(σ0,M) : ∆σ. (5.16)

Given the inherent inverse isotropy, the tests can only be conducted under isotropic stress

conditions. Additionally, in this analysis axis x2 is considered vertical, so:
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To calculate shear moduli Gvh, Ghh, the respective stress increment are needed:

∆σ =









0 ∆σvh 0

∆σvh 0 0

0 0 0









, ∆σ =









0 0 ∆σhh

0 0 0

∆σhh 0 0









, (5.18)

whereas in terms of Young’s moduli Ev, Eh the following states are considered:

∆σ =









0 0 0

0 ∆σv 0

0 0 0









, ∆σ =









∆σh 0 0

0 0 0

0 0 0









. (5.19)

Based on Eq. 5.16, the cross-anisotropic parameters are obtained:

Gvh =
∆σvh

2∆εe
12

= Gref
0

(
p0

pref

√

c1 + 1
3
c2

)1−β

c1 + 1
2
c2

, (5.20)

Ghh =
∆σhh

2∆εe
13

= Gref
0

(
p0

pref

√

c1 + 1
3
c2

)1−β

c1

, (5.21)

Ev =
∆σv

∆εe
22

= 2Gref
0

(3c1 + c2)
(

p0

pref

√

c1 + 1
3
c2

)1−β

(c1 + c2)[c2β + c1(2 + β)]
, (5.22)

Eh =
∆σh

∆εe
11

= 2Gref
0

(3c1 + c2)
(

p0

pref

√

c1 + 1
3
c2

)1−β

c1[c2 + c1(2 + β)]
, (5.23)

νvh =
−∆εe

11

∆εe
22

=
c1(1 − β)

c2β + c1(2 + β)
, (5.24)

νhh =
−∆εe

33

∆εe
11

=
c1(1 − β)

c2 + c1(2 + β)
. (5.25)

Next, the values of anisotropic coefficients αG, αE, αν can be derived:

αE =
Eh

Ev

=
(c1 + c2)[c2β + c1(2 + β)]

c1[c2 + c1(2 + β)]
, (5.26)
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αG =
Ghh

Gvh

= 1 +
c2

2c1

, (5.27)

αν =
νhh

νvh

=
c2β + c1(2 + β)

c2 + c1(2 + β)
. (5.28)

The coefficient αG is only influenced by constants c1 and c2. Since the condition c1 = 1.0

has been adopted, then c2 = 2(αG − 1). Following this relation and the assumption that the

samples are tested under the isotropic stress state p0 = pref, the Eqs. 5.20-5.25 can be written

in a simplified form:

Gref
vh = Gref

0

(√

1 + 2
3
(αG − 1)

)1−β

αG

, (5.29)

Gref
hh = Gref

0





√

1 +
2

3
(αG − 1)





1−β

, (5.30)

Eref
v = 2Gref

0

(1 + 2αG)
(√

1 + 2
3
(αG − 1)

)1−β

(2αG − 1)[(2αG − 1)β + 2]
, (5.31)

Eref
h = 2Gref

0

(1 + 2αG)
(√

1 + 2
3
(αG − 1)

)1−β

2αG + β
, (5.32)

νvh =
1 − β

(2αG − 1)β + 2
, (5.33)

νhh =
1 − β

2αG + β
. (5.34)

The values of Poisson’s ratios νvh and νhh are dependent on both αG and β, which imposes

certain limits on their values, as presented in Fig. 5.5. In the case of νvh, the maximum value

that can be obtained, limited by the thermodynamic laws, is νvh = 0.5, regardless of the applied

αG coefficient. However, considering the β values for overconsolidated soils, β = 0.3 − 0.7, the

extreme values of νvh for isotropic material (αG = 1.0) are νvh ≈ 0.11 and νvh ≈ 0.3. Along

with the increasing αG, the possible values of νvh decrease and, in the case αG = 2.0, are

νvh ≈ 0.07 and νvh ≈ 0.24. Conversely, the highest νvh values are obtained for αG = 0.7,

νvh ≈ 0.13, νvh ≈ 0.33. Additionally, as αG decreases, the relationship between νvh and β

becomes increasingly linear. For isotropic material, the same curve is obtained, νhh = νvh.

However, as αG increases, the maximum possible value of νhh decreases significantly, in this

case νhh = 0.25. Conversely, for decreasing αG, the minimum value of β parameter increases,

once νhh = 0.5 is reached. Similar to the Poisson’s ratio νvh, higher values of νhh are obtained

as αG decreases. In this case, however, those differences are considerably more pronounced. For
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Fig. 5.5: The influence of cross-anisotropy coefficient αG and β parameter on Poisson’s ratios νvh and νhh. The values

of β reported in overconsolidated stiff soils are marked

overconsolidated soils, the threshold values are νvh ≈ 0.06, νvh ≈ 0.16 when αG = 2.0, and

νvh ≈ 0.14, νvh ≈ 0.41 when αG = 0.7.

Based on Eqs. 5.29-5.32 , the reference shear modulus Gref
0 can be calculated in the following

way:

Gref
0 (Gref

vh, αG, β) = Gref
vhαG





√

1 + 2αG

3





β−1

, (5.35)

Gref
0 (Gref

hh, αG, β) = Gref
hh





√

1 + 2αG

3





β−1

, (5.36)

Gref
0 (Eref

v , αG, β) = Eref
v

1 − 2αG

1 + 2αG

(
1 − 2αG

2
β − 1

)




√

1 + 2αG

3





β−1

, (5.37)

Gref
0 (Eref

h , αG, β) = Eref
h

(2αG + β)
(√

1+2αG

3

)β−1

2(1 + 2αG)
. (5.38)

Considering a soil sample tested in a triaxial apparatus, the cross-anisotropic moduli that are

especially feasible to be properly measured are: Gref
vh and Eref

v . In this work, shear modulus in

vertical direction Gref
vh is established as a default. Hence, the alternative set of model stiffness

constants are: Gref
vh, αG, β and pref.

As such, the joint stress-microstructure invariant from Eq. 5.8, can be defined as:

Q(σ,M) =
1

2

mab
︷ ︸︸ ︷

[δij + 2(αG − 1)Mab]σbcσca =
1

2
mabσbcσca (5.39)
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and by substituting Gref
0 with the expression in Eq. 5.35, the updated hyperelastic potential is

obtained:

W (σ,M) =

(

pref

√
1
2

+ αG

)1−β

αG Gref
vh(1 + β)

Q(σ,M)
1+β

2 . (5.40)

5.1.2 Mixed anisotropy at axisymmetric stress state

It is possible to expand the definitions of inherent cross-anisotropic stiffness parameters to take

asisymmetric stress state (K 6= 1.0) into consideration. By doing so, the actual influence of the

stress conditions on the soil stiffness can be demonstrated. The study of the material response

to stress increments shown in Eqs. 5.18 and 5.19 is carried out analogously as in Eq. 5.16, based

on the following initial stress state:

σ
0 =









− 3p0

1+2K
0 0

0 − 3Kp0

1+2K
0

0 0 − 3Kp0

1+2K









. (5.41)

The analysis conducted with the standard model parameter set: Gref
0 , c1, c2, β, K, p0, pref

returns the following stiffness parameters:

Gvh =
2Gref

0

2c1 + c2





p0

pref

√

3(c1 + c2 + 2c1K2)

1 + 2K





1−β

, (5.42)

Ghh =
Gref

0

c1





p0

pref

√

3(c1 + c2 + 2c1K2)

1 + 2K





1−β

, (5.43)

Ev = 2Gref
0





p0

pref

√

3(c1 + c2 + 2c1K2)

1 + 2K





1−β

c1 + c2 + 2c1K
2

(c1 + c2)[2c1K2 + (c1 + c2)β]
, (5.44)

Eh = 2Gref
0





p0

pref

√

3(c1 + c2 + 2c1K2)

1 + 2K





1−β

c1 + c2 + 2c1K
2

c1[c1 + c2 + c1K2(1 + β)]
, (5.45)

νvh =
c1K(1 − β)

2c1K2 + (c1 + c2)β
, (5.46)

νhh =
c1K

2(β − 1)

c1 + c2 + c1K2(1 + β)
. (5.47)
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The anisotropy coefficients that include stress conditions are defined as follows:

αE =
(c1 + c2)[2c1K

2 + (c1 + c2)β]

c1[c1 + c2 + c1K2(1 + β)]
, (5.48)

αν =
K[2c1K

2 + (c1 + c2)β]

c1 + c2 + c1K2(1 + β)
, (5.49)

while the value of αG remains the same as in Eq. 5.27. This shows the model’s key characteristic

that, under axisymmetric stress circumstances, αG remains constant and unaffected by the

degree of stress obliquity. As such, the conditions c1 = 1.0 and c2 = 2(αG − 1) are utilised in

the further calculations. The cross-anisotropic stiffness parameters, that are depended on αG,

are defined as:

Gvh =
Gref

0

αG





p0

pref

√
6K2 + 6αG − 3

1 + 2K





1−β

, (5.50)

Ghh = Gref
0





p0

pref

√
6K2 + 6αG − 3

1 + 2K





1−β

, (5.51)

Ev = 2Gref
0





p0

pref

√
6K2 + 6αG − 3

1 + 2K





1−β

2K2 + 2αG − 1

(2αG − 1)[2K2 + (2αG − 1)β]
, (5.52)

Eh = 2Gref
0





p0

pref

√
6K2 + 6αG − 3

1 + 2K





1−β

2K2 + 2αG − 1

K2(1 + β) + 2αG − 1
, (5.53)

νvh =
K(1 − β)

2K2 + (2αG − 1)β
, (5.54)

νhh =
K2(β − 1)

K2(1 + β) + 2αG − 1
. (5.55)

Given the constants αG, β, K, p0, pref, the reference shear modulus Gref
0 can be related to

the cross-anisotropic stiffness moduli in a following way:

Gref
0 (Gref

vh, αG, β,K, p0, pref) = αGG
ref
vh





p0

pref

√
6K2 + 6αG − 3

1 + 2K





β−1

, (5.56)

Gref
0 (Gref

hh, αG, β,K, p0, pref) = Gref
hh





p0

pref

√
6K2 + 6αG − 3

1 + 2K





β−1

, (5.57)
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Gref
0 (Eref

v , αG, β,K, p0, pref) =

= Eref
v





p0

pref

√
6K2 + 6αG − 3

1 + 2K





β−1
(2αG − 1)[2K2 + (2αG − 1)β]

2(2K2 + 2αG − 1)
, (5.58)

Gref
0 (Eref

h , αG, β,K, p0, pref) =

= Eref
h





p0

pref

√
6K2 + 6αG − 3

1 + 2K





β−1
K2(1 + β) + 2αG − 1

2(2K2 + 2αG − 1)
. (5.59)

In Fig. 5.6 the influence of mixed stiffness anisotropy on the soil response is shown, in a

form of orientation distribution function %−1C (Eq. 4.5). The parameters Gref
vh and p0 are kept

constant. Their magnitude affects the size of the spheres and here are selected to fulfill the visual

purposes only. Three different values of anisotropy coefficient αG and initial stress condition

K0 are considered. The effect of pure inherent anisotropy is presented for K0 = 1.0, whereas

the influence of independent stress-induced anisotropy is shown when αG = 1.0. It should be

highlighted, based on this study, that the stiffness distribution of soil appears to be primarily

influenced by the anisotropy coefficient αG.

5.1.3 Anisotropy coefficients

Out of the analysed anisotropy coefficients of stiffness, the αG parameter is the only constant

that is fully independent and its value is not influenced, in any way, by stress. The remaining

anisotropy coefficients αE and αν , described in Eqs. 5.26, 5.28, can be defined as functions of

parameters αG and β:

αE(αG, β) =
(2αG − 1)[(2αG − 1)β + 2]

2αG + β
, (5.60)

αν(αG, β) =
(2αG − 1)β + 2

2αG + β
. (5.61)

Following these correlations, the values of the anisotropy exponents xGE and xGν are also

dependent on αG and β. In Fig. 5.7, the relations described in Eqs. 5.60 and 5.61, are presented

for three different β parameters, that correspond to the values reported for overconsolidated

clays. The model response is compared to the anisotropy exponents established in the model

proposed by Graham and Houlsby (xGE = 0.5, xGν = 1.0) [58], as well as the value based

on the experimental data and suggested by Mašín and Rott (xGE = 0.8) [108]. In case when

stiffness is greater in the vertical direction (αG = 0.7 − 1.0), the value of coefficient β has very

little effect on the obtained relationship αG(αE) and the model response especially correlates to



5.1 Small-strain range: hyperelastic part 67

Fig. 5.6: Spherical plots showing the influence of mixed anisotropy on the directional stiffness distribution in regard to

different values of αG = (0.8, 1.0, 2.0) and K0 = (0.5, 1.0, 2.0)

xGE = 0.5. However, the typical values of anisotropy coefficient αG for overconsolidated clays,

reported in Tab. 3.1, are within the range of αG = 1.1 − 2.5. The response obtained for β = 0.5

seems to be the most optimal. In terms of αν(αG), the calculated results highly deviate from

the relation αν = αG. Subsequently, it is impossible to assess whether these functions correlate

with laboratory studies due to the extreme data scatter.

The relation between the β parameter and the anisotropy coefficients αE and αν is shown

in Fig. 5.8. The changes of αE and αν are determined for three values of αG = 0.7, 1.0, 2.0.
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Fig. 5.7: The relations between anisotropy coefficients: αE(αG) and αν(αG). The response obtained from the calculations

conducted with the hyperelastic model for β = 0.3, 0.5, 0.7. The results are compared to anisotropy exponents xGE =

0.5, 0.8 and xGν = 1.0

Since αG is the independent constant, it is plotted for comparison. If αG > 1.0, then the value

of coefficients αE and αν increases with β. The opposite situation is true for αG < 1.0. In

addition, when comparing αG with the other anisotropy coefficients, the following relationships

are observed: for αG > 1.0, the cross-anisotropy coefficient αG is higher than αν but its value

is lower than αE. In contrast, when αG < 1.0, the opposite trend is apparent: αG < αν and

αG > αE. This implies that for αG > 1.0, the value of anisotropy exponents are: xGE < 1.0 and

xGν > 1.0, whereas for αG < 1.0, these conditions are reversed: xGE > 1.0, xGν < 1.0. However,

the moment the isotropic coefficient αG = 1.0 is introduced, αE and αν are also isotropic and

are no longer dependent on β.

Defined in Eqs. 5.48 and 5.49, anisotropic coefficients, that incorporate axisymmetric stress

state, can be rewritten so they depend on three parameters: αG, β and K:

αE(αG, β,K) =
(2αG − 1)[2K2 + (2αG − 1)β]

2αG +K2(1 + β) − 1
, (5.62)

αν(αG, β,K) =
2K3 +K(2αG − 1)β

K2(1 + β) + 2αG − 1
. (5.63)

In Fig. 5.9, the changes in the mixed anisotropy at axisymmetric stress states, based on the

stress condition K and αG ratio, are demonstrated using the broader definitions of anisotropy

coefficients provided in Eqs. 5.62 and 5.63. The examples are considered for β = 0.5 and three

values of αG. Given the isotropic stress state (K = 1.0), the parameters αE and αν exhibit
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Fig. 5.8: The influence of β on the value of the anisotropy coefficients αE and αν for three different cases of αG =

0.7, 1.0, 2.0

pure inherent anisotropic behaviour and the expressions from Eqs. 5.60 and 5.61 are regained.

Under anisotropic stress conditions (K 6= 1.0), the anisotropy ratios increase along with K.

Fig. 5.9: Anisotropy coefficients αE and αν at various stress conditions K
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5.2 Intermediate strain range: stiffness degradation

The pre-failure stiffness degradation with strain is simulated, in six-dimensional strain space,

with the use of the Brick-type procedure, in depth described in Sec. 2.2.1. In the proposed

AHEBrick model, the relationship between stiffness modulus and strain is based on the S-

curve equation by Santos and Correia [142], see Eq.2.22. In the original expression, the decay

of the secant shear modulus Gref
s /Gref

0 is determined. However, as numerical analysis is based

on incremental loading, the definition of the tangent shear modulus degradation is required:

Gref
t

Gref
0

=

(

γ0.7

γ0.7 + 3
7
γ

)2

. (5.64)

The relative strain distance of each stiffness drop - the string length sj, is measured with

the shear strain invariant γ =
√

3
2
eijeij. However, if a constitutive model is not limited by

any additional surfaces, i.e. cap yield surfaces, it is unwise to use shear strain invariant γ as a

measure of strain. This especially is apparent during a triaxial compression test on an isotropic

sample (αG = 1.0). In such case shear strain is not generated (γ = 0), and consequently, no

stiffness degradation may occur, despite the increasing value of mean stress p.

In the original Brick formulation [149], the Euclidean norm ||ε|| is defined in strain space

and its axes (εV and γM in plane strain model, or εV and γoct in case of three-dimensional

formualtion) are specially selected in such a way that it is possible to define a realistic value of

K0 of a tested material. Additionally, the model is not constrained by any conventional yield

surfaces, so the selected norm allows to limit shear strength of soil.

Ultimately, in the AHEBrick model, the Euclidean norm of strain tensor ||ε|| =
√
εijεij has

been chosen as a strain distance measure between a person and bricks. It has been decided to use

this strain norm due to its straightforward definition, as compared to the original norm proposed

by Simpson. In addition, it accounts for stiffness degradation during isotropic compression, with

no need for cap surfaces. The relation between tangent shear modulus and the Euclidean norm

of strain tensor ||ε|| is obtained by modifying Eq. 5.64:

Gref
t

Gref
0

=

(

||ε||sh
||ε||sh + 3

7
||ε||

)2

, (5.65)

where ||ε||sh is a parameter that determines the steepness and shape of S-curve.

The differences of stiffness changes due to applied strain measure can be presented in a form

of drained triaxial radial paths. This test allows the influence of the stress path direction on

soil stiffness to be examined. It involves performing stress probes, from a fixed initial stress

point, and measuring the obtained increments of deviatoric εq and volumetric εV strain. The

magnitude of the changes in stiffness can be then visualised using isolines of generalised strain:
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Fig. 5.10: Isolines of accumulated generalised strain ε obtained from the simulation of drained triaxial radial stress

paths. The influence of strain measure on stiffness changes is presented for Euclidean norm of strain tensor ||ε||, Simpson’s

Euclidean norm for the three-dimensional model ||εS3D||, and shear strain invariant γ

ε =
√

∆ε2
V +∆ε2

q. (5.66)

This test was conducted experimentally for natural Pisa Clay and results were reported in [37].

The graphs, presented in Fig. 5.10, show the results of drained triaxial radial stress paths

simulation. The influence of the strain norm on the directional changes of stiffness is conduced

for Euclidean norm of strain tensor ||ε||, Simpson’s Euclidean norm for the three-dimensional

model ||ε|| = ||εS3D||, and shear strain invariant γ. The tested material is isotropic (αG = 1.0)

and the input parameters are the same for the each example. The values of S-curve shape

parameters ||ε||sh, γ0.7 and ||εS3D||0.7 (defined analogously as in Eqs. 5.64 and 5.65) are calibrated

in the way that, for the case of conventional drained triaxial compression test (CID), soil stiffness

degradation is comparable. The analysed material is tested at the initial isotropic stress state

p0 = 100 kPa. The schematic diagram of stress path procedure is illustrated in Fig. 5.10. The

stress space is limited by the compression Mc and extension Me shear failure lines and Rankine

criterion prevents tensile stress generation.

The results show the significant effect the selection of a strain measure has on changes in

soil stiffness of the samples, subjected to the same stress. It is particularly apparent when the
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Fig. 5.11: The stepwise description of the S-shaped curve equation proposed by Santos and Correia [142], after [46]

magnitude of stiffness degradation depends on the shear strain invariant γ, especially consid-

ering the soil response to the drained stress path, inclined ω = 0◦ to the p axis. In this case the

values of the load components are equal, σ11 = σ22 = σ33 = const. Hence, the shearing of the

sample is minimal and, as a result, stiffness degrades accordingly, e.g. the generalised strain

ε = 0.005 is obtained for the value of mean stress p ≈ 400 kPa. In comparison, if stiffness decay

of a sample is dependent on strain norms ||ε|| or ||εS3D||, the same magnitude of the stiffness

change ε = 0.005 is reached for the significantly lower stress level p ≈ 200 kPa.

Based on the stiffness-strain relation in Eq. 5.65, the Brick-type stepwise degradation, applied

in the model, is presented in Fig. 5.11. The strain history is traced with Nb = 10 bricks. Each

brick represents one step, which height, so-called stiffness proportion, has a constant value:

∆ωG =
Gref

0 −Gref
tmin

Nb Gref
0

. (5.67)

To avoid a situation where shear modulus Gref
t degrades to zero, which is problematic in numeri-

cal modeling, a minimum value of tangent shear modulus Gref
tmin is applied. This value is reached

when all the bricks are pulled. The value of Gref
tmin can be estimated based on the S-shaped curve

obtained from the laboratory testing. Otherwise, it can be assumed as 0.1 Gref
0 .

The length of a string sj for a j-th brick (j = 1, 2, 3...Nb) is calculated from the following

expression:
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sj =
7

3
||ε||sh

(√

1

1.0 − j∆ωG + 0.5∆ωG

− 1

)

. (5.68)

If the model is implemented into a displacement-based FE software, e.g [26], then the value

of strain increment ∆ε is known in the stress integration procedure. During the initial step,

the location of a man ε and bricks εbj is usually at the origin of a strain space (ε = εbj = 0).

In every next iteration the following condition is reviewed, for each j-th brick:

dj = ||ε +∆ε − ε
bj|| > sj, (5.69)

where dj is the strain distance from the initial position. The moment the condition from Eq.

5.69 is fulfilled for a given j-th brick, this brick is assumed active. Its location is then updated

using the strain increment:

∆ε
bj = (ε +∆ε − ε

bj)
dj − sj

dj
. (5.70)

At the end of each step the number of active bricks nab is counted and the actual tangent

shear modulus Gref
t can be calculated:

Gref
t = Gref

0 (1 − nab∆ωG). (5.71)

Based on this value, it is possible to determine the components of the hyperelastic stiffness

matrix and, as result, obtain the stress increment ∆σ.

Due to the Brick procedure the AHEBrick model poses the ability to accurately reflect the

influence of recent stress history on soil stiffness. Fig. 5.12 shows the results of a numerical

simulation presenting a simplified analysis of an experimental study performed on London Clay

[12, 141], described in Sec. 2.2. The sample loaded at the constant mean stress p = 200 kPa

(0X) up to the failure is preceded by paths, which start in different stress points in p− q space.

Four paths are taken into consideration:

• A0X, starting at point p0 = 250 kPa, q0 = 0 kPa; q = const unloading to p = 200 kPa; final

path 0X up to the failure,

• B0X, starting at point p0 = 200 kPa, q0 = −50 kPa; p = const loading to p = 200 kPa; final

path 0X up to the failure,

• C0X, starting at point p0 = 150 kPa, q0 = 0 kPa; q = const loading to p = 200 kPa; final

path 0X up to the failure,

• D0X, starting at point p0 = 200 kPa, q0 = 50 kPa; q = const unloading to p = 200 kPa; final

path 0X up to the failure.

The analysed material is isotropic, αG = 1.0. Stiffness-strain relationship is defined as a change

of derivatives dq/dεq with deviatoric strain εq. The presented S-curves are plotted for the last
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Fig. 5.12: The influence of the recent stress history on the stiffness degradation, presented as a relation between

derivatives dq/dεq and deviatoric strain εq. Three strain measures ||ε||, ||εS3D||, γ are considered

stage of tests, the 0X path. The simulation is conducted considering three strain measures: ||ε||,
||εS3D||, γ.

Overall, the results show the similar pattern as the experimental data presented in Fig.

2.8. Among the analysed strain norms, the closest match is observed for the Euclidean norm

of strain tensor ||ε||. The highest initial stiffness is obtained from the D0X test. Soil stiffness

regains its maximum value due to unloading occurring before the final 0X path. The material

response to A0X and C0X simulations is similar, as the preceding A0 and C0 loading paths

are subjected to the same stress increment (q = const = 0 kPa, ∆p = 50 kPa). In contrast, the

lowest stiffness is observed in the B0X test. Here, no change in stress direction or unloading

occurs, and as a result stiffness degrades significantly before the final 0X path is conducted.
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In the case of the other two strain measures, the most notable differences are observed for

the A0X and C0X tests. Using the Simpson’s Euclidean norm ||εS3D||, the stiffness obtained

from the simulation of the C0X path is comparable to B0X test. This suggests that the greatest

degradation occurs when the 0X path is preceded by compression loading. Conversely, when

stiffness degradation is controlled by the shear strain invariant γ, the stiffness calculated for

A0X and C0X analyses is identical and significantly higher than for other strain norms. This

behaviour can be explained by the definition of the shear strain measure, where stiffness de-

grades with the accumulation of shear strains, which do not develop under isotropic conditions.

As a result, the observed soil response reflects the final stage of the test: loading at constant

stress p = 200 kPa.

5.3 Yield surface: isotropic strength criterion

Simpson’s original Brick model accurately reproduces shear strength; that is, the mobilized

friction angle cannot be greater than the maximum specified friction angle. The shear strength

in the suggested AHEBrick formulation is determined via the traditional stress-based isotropic

Matsuoka-Nakai criterion [106]:

FMN(σ) = I1I2 − 9 − sin2 φ

−1 + sin2 φ
I3 ≤ 0, (5.72)

where I1, I2, I3 are the stress invariants:

I1 = σkk, I2 =
1

2

[

σijσij − (I1)
2
]

, I3 = det(σ), (5.73)

and φ is the effective maximum friction angle.

To include the effective cohesion c within the failure criterion, the stress invariants in Eq.

5.73 should be calculated for the stress state σ − pcδ, for which compressive stress is defined

as: pc = c cotφ. Furthermore, the range of the permissible stress states is limited due to the

Rankine tension cut-off criterion p ≥ pte.

In the flow rule, the Drucker-Prager function is applied as the plastic potential:

GGP(σ) = q − 6 sinψ

3 − sinψ
p, (5.74)

ψ being the dilatancy angle.
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5.4 Implementation

In this section of the implementation of the AHEBrick model into a commercial displacement-

based FE software is presented. In Plaxis [26] environment, the described material model is

programmed as a special Fortran90 subroutine "User-Defined Soil Model" UDSM. The sub-

routine is compiled into the dynamic link library file (DLL) and added to the main program

directory. Within the program the following six tasks need to be performed:

1. Initialisation of state variables;

2. Calculation of constitutive stresses;

3. Return of the state variables;

4. Return of attributes matrix;

5. Creation of effective material stiffness matrix;

6. Creation of elastic material stiffness matrix.

The detailed description of every task can be found in Plaxis Material Models Manual [27].

As a simplification, in the numerical code, the tangent compliance and tangent stiffness

fourth order tensors (Ct,Dt) are reduced to 6 × 6 Voigt notation matrices
([

Dt
]

,
[

Ct
])

. This

operation can be conduced due to the symmetries of the fourth order tensors calculated from

the elastic potential function. The reduced compliance and stiffness matrices are obtained from

the stress and strain tensors defined in a simplified manner as 6 × 1 vectors:

{σ} = {σ11 σ22 σ33 σ12 σ23 σ31}T and {ε} = {ε11 ε22 ε33 γ12 γ23 γ31}T . (5.75)

In general, in UDSM models the user introduces the information about current stresses and

state variables, as well as the required model parameters. Provided input parameters of the

AHEBrick model are shown in Tab. 5.1 In the model the state variables array StVar contains

the information about the current position of a person ε and bricks εbj which is determined

by 66 strain components. In the first step the StVar0 array only contains zeros. In every next

step it is automatically updated and the resulting state variables StVar calculated in a previous

step is transferred to the next one and used as the initial value StVar0.

In numerical calculations the current position of a person {ε} and bricks
{

εbj
}

is determined

based on the strain increments, supplied by Plaxis. It should be noted that in the program’s

nomenclature, "increment" refers to the total added value within the current step. The infor-

mation about intermediate increments of each iteration is not stored in the memory. Since the

main program may typically produce large strain increments, it could generate the problem of

the nonlinear stiffness changes overshooting. Hence, it is crucial to incorporate a substepping
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Table 5.1: Input parameters of the AHEBrick model

No. Parameter Description

1 Gref
0 [kPa] reference small-strain shear modulus

2 β [-] parameter controlling the order of barotropy

3 pref [kPa] reference stress

4 c1 [-] anisotropy constant - stress-induced anisotropy

5 c2 [-] anisotropy constant - stress-induced and microstructure

anisotropy

6 φ [◦] effective maximum friction angle

7 c [kPa] effective cohesion

8 ψ [◦] dilatancy angle

9 pte [kPa] maximum tensile stress

10 Gref
tmin [kPa] minimum reference tangent shear modulus

11 ||ε||sh [-] parameter controlling the shape and steepness of the

S-curve

scheme into the algorithm. In the model the substepping is applied, if the strain increment of

the Euclidean norm ||∆εtot|| is greater than ||∆εmax|| = 10−5.

The simplified algorithm of the AHEBrick model numerical code implementation is presented

in Box 5.1. The stiffness matrix is obtained by the inversion of the compliance matrix [Ce] =

[De]−1. If the calculated stress increment (see point IV.) does not fulfill the shear strength

criterion, calculated in Eq. 5.72, then it is returned to the yield surface FMN(σ) = 0. For this,

the implicit return mapping algorithm, explained in [84], is used.
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Box 5.1. Algorithm presenting the implementation of the AHEBrick model in the commercial FE

code [26]

I. {σ0}, {∆ε tot} and StVar0 are given

II. Calculation of the S-shaped curve parameters sj and ∆ωG, based on Eqs.

5.67-5.68

III. Calulation of the substepping scheme parameters:

1. Calculation of ||∆ε tot||
2. Calculation of the substepping variable xnsub:

xnsub = ||∆ε tot||
||∆εmax||

, ||∆εmax|| = 10−5

3. IF: xnsub > 1.0 THEN:

a) {∆ε} = 1
xnsub

· {∆ε tot}
b) nsub = FLOOR(xnsub)

c) rest = 1.0 − nsub

xnsub

d) IF: rest > 0.0 THEN:

{∆εrest} = rest · {∆ε tot}, nsub := nsub + 1

IV. Calculation of the constitutive stress increments {∆σ}:

1. Initial data: {∆σ} = 0, {σ0
i } = {σ0} , i = 1

2. DO:

a) {ε} = {ε0} + {∆ε}
b) Calculation of the actual tangent shear modulus Gref

t from the Eq.

5.71

c) Determination of the hyperelastic stiffness matrix [D e(σ0
i )] for the

actual Gref
t and the remaining constant parameters c1, c2, β, pref

d) Calculation of stress predictor

{σe
i} = {σ0

i } + [D e(σ0
i )] · {∆ε}

e) IF: F ({σe
i}) > 0 THEN: return mapping algorithm; calculation of

{σi} , {∆σi}
ELSE: {σi} := {σe

i} , {∆σi} := {∆σe
i}

f) {∆σ} = {∆σ} + {∆σi} , {σ0
i } = {σi}

IF: i < nsub THEN: i = i+ 1

ELSE IF: i = nsub AND {∆εrest} > 0 THEN:

{∆ε} = {∆εrest} , i = i+ 1

WHILE i ≤ nsub



6

Verification of the AHEBrick model in element

tests and exemplary BV problems

In the following chapter the model performance is investigated. At the most basic level it is

carried out as a laboratory test simulation on a single element. The element test analysis allows

to examine the model functionality and the influence of individual input parameters on the

material response, either in plane strain or in three-dimensional cases. Additionally, based on

the results of laboratory research, it is possible to perform non-standard parameters calibra-

tion, aiming to obtain performance of implemented material model close to the investigated

mechanical behaviour of soils.

Model response is also validated through FE numerical calculations of geotechnical boundary

value problems (BVP). The aim of BVPs is to investigate material parameter influence on

the soil-structure interaction, hence the homogeneous soil layout and basic flow conditions are

considered. The investigations are carried out for tunnel drilling, open excavation and supported

excavation cases. These examples are considered due to significant unloading occurring during

the construction and, as a result, stresses within subsoil undergoing substantial redistribution.

The directions of the principal stresses are subjected to large rotations, and the corresponding

principal stress components change considerably, which strongly affect stiffness of anisotropic

soils.

The numerical simulations are carried out with a use of own element test level programs,

written in Fortran 90 and Mathematica environments (element tests), and with commercial FE

[26] code in plane strain (element tests and BVPs) and 3D conditions (BVPs).

6.1 Element tests

The influence of selected material parameters on the soil response is examined using element

testing. This study involves the simulation of triaxial compression tests, under both drained
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and undrained conditions, as well as drained radial path tests. Furthermore, the influence of

stress history on the material behaviour is presented.

A soil sample with the predetermined set of material parameters listed in Tab. 6.1 was

used for the analysis. The values of the listed parameters are selected to be representative of

parameter values obtained for preconsolidated clays, (i.e. London Clay or Oxford Clay, see Sec.

6.1.4). The parametric study is conducted on the following parameters: αG, β, ||ε||sh and K0.

Tab. 6.1 provides their range. It should be noted that each parameter is tested separately and

the remaining variables assume the default value marked as bolded. Any changes in this regard

are always indicated in the text.

The model validation is also conducted based on laboratory test results of some stiff over-

consolidated fine-grained soils, repotted in literature.

Table 6.1: Set of the AHEBrick model parameters used in element test simulations

Parameter Clay

Small strain stiffness

Gref
vh [kPa] 50000

β [-] 0.4, 0.5, 0.6

αG [-] 0.7, 1.0, 2.0, 3.0

pref [kPa] 100

Stiffness degradation
Gref

vhtmin [kPa] 5000

||ε||sh [-] 0.0005, 0.0007, 0.0009

Shear strength criterion

φ [◦] 27

c [kPa] 10

ψ [◦] 5

pte [kPa] 0

Initial stress state K0 [-] 0.5 1.0, 2.0

6.1.1 Triaxial compression tests

The simulation of triaxial compression tests at the initial isotropic stress p0 = pref = 100 kPa, is

conducted for undrained (CIU) and drained (CID) conditions. The influence of cross-anisotropy

coefficient αG on material response is presented in Fig. 6.1. The top-left graph (Fig. 6.1a)

illustrates the influence of the stiffness anisotropy coefficient αG on the initial inclination of the

undrained stress path in the p− q plane.

For isotropic material (αG = 1.0) the path is initially vertical. In contrast, the path is

inclined to the right for αG = 0.7 and to the left if αG = 2.0. The material response for

αG > 1.0 correlates with the laboratory data on the overconsolidated stiff clays, presented in

Sec. 6.1.4. As the value of deviatoric stress q increases, all paths begin to lean slightly to the
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right, which is related to the stress-induced anisotropy of soil stiffness but also, after reaching

shear strength criterion, to the dilatancy, which can be described with Skempton’s parameter

of pore pressure A [151]. Due to the initial inclination of the stress paths, the obtained shear

strength decreases proportionally with the αG value. Hence, it should be noted that both

stress-induced and inherent stiffness anisotropy of soil significantly influences shear strength of

a material in undrained conditions, which has important practical implications. The stress path

under drained conditions is also presented, as a comparison. In this case, stiffness anisotropy

does not affect the shear strength of the soil.

The influence of αG value on soil response is further evident for undrained compression

curves εv − q, presented in Fig. 6.1b. These curves are plotted alongside with the step-wise line

(a)
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h

(b)

(c) (d)
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Fig. 6.1: The influence of anisotropy coefficient αG on soil response subjected to the simulated triaxial CIU and CID

tests: a) stress paths in p− q plane, b) undrained compression curves εv − q plotted with brick activation line εv −nab, c)

activation of bricks εv −nab in drained conditions, d) drained compression curves εv − q. The minimum stiffness Gref
vhtmin,

corresponding to nab = 10 is marked for each drained compression curve
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indicating the activation of bricks nab in the AHEBrick model. In modelling, the undrained

compression is controlled with strains, so the activation of bricks remains unaffected by changes

in αG.

In contrast, drained compression is stress-controlled and the effect of αG on stiffness degra-

dation is shown in Fig. 6.1c in a form of three separate εv −nab curves. Notable differences can

be observed at higher strain levels, here for nab = 8, 9, 10.

Presented in Fig. 6.1d, axial stiffness of soil, in drained conditions, increases with the de-

creasing αG value. The minimum stiffness Gref
vhtmin, corresponding to nab = 10 is marked for each

compression curve. This shows that as αG increases the activation of all bricks occurs quicker

(a) (b)

(c) (d)

TX CID

TX CIUTX CIU

d
ra

in
ed

 p
at

h

TX CID

Fig. 6.2: The influence of β parameter on soil response subjected to the simulated triaxial CIU and CID tests: a) stress

paths in p− q plane, b) undrained compression curves εv − q plotted with brick activation line εv − nab, c) activation of

bricks εv −nab in drained conditions, d) drained compression curves εv −q. The minimum stiffness Gref
vhtmin, corresponding

to nab = 10 is marked for each drained compression curve
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before the shear strength envelope is reached. In the case of αG = 1.0 and αG = 2.0 this is

manifested as a monotonically increasing straight up line until failure.

The same set of tests, presented in Fig. 6.2, was performed in order to study the effect of β on

an isotropic sample, αG = 1.0. The values of β = 0.4, 0.5, 0.6, covered by the study, have been

reported to occur for overconsolidated clays [19]. The effect of β on undrained stress paths, in

p− q plane, is presented in Fig. 6.2a. This parameter controls the order of dependency of stress

on stiffness, so the differences in material response become more noticeable as the deviatoric

stress level q increases. Taking into consideration the expression m = 1 − β, the lower β value

is, the greater influence of stress on soil stiffness is obtained, which in turn leads to higher mean

stress p.

Additionally, the β parameter affects the shear strength of the material under undrained

conditions, as presented in a form of compression curves εv − q, in Fig. 6.2b. The initial inclina-

TX CIU TX CIU

shear strenght envelope

TX CID TX CID

(a)

(b)

Fig. 6.3: The influence of the shape parameter ||ε||sh on soil response subjected to the simulated a) undrained and b)

drained triaxial compression tests. Brick activation curves εv − nab and compression curves εv − q are presented. The

minimum stiffness Gref
vhtmin, corresponding to nab = 10 is marked for each compression curve
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tion of all three curves is the same, since according to Eq. 5.35, if material is isotropic(αG = 1.0)

the initial shear stiffness Gref
0 is independent of β. In addition this parameter does not affect

stiffness degradation, hence a single εv − nab line is plotted.

Figs. 6.2c and 6.2d show the material response to drained compression. Under these condi-

tions the β parameter influences soil stiffness and its degradation but has no effect on shear

strength. Furthermore, similarly to αG, the higher the value of β is, the minimum stiffness,

which corresponds to the activation of all bricks nab = 10 is reached at quicker rate.

The influence of the shape parameter ||ε||sh on soil response is presented in Fig. 6.3. This

parameter determines the steepness of the strain-stiffness degradation curve, meaning it controls

the transition from high initial stiffness to nonlinear tangent stiffness changes up to the moment

the minimal stiffness becomes stress dependent and shear failure is reached. Along with the

increase of ||ε||sh value, the rate of stiffness degradation decreases. However, this constant does

not affect the stress paths and, consequently, does not influence the strength of the sample.

Fig. 6.4: The influence of αG, β, ||ε||sh on Poisson’s ratio νvh presented as axial and volumetric strain relation εv − εV
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Hence only compression curves εv − q and brick activation plots εv − nab under undrained and

drained conditions are illustrated.

The influence of the parameters αG, β, ||ε||sh on the relationship between axial and volu-

metric strain (εv − εV ) is illustrated in Fig. 6.4. This relationship, represented as an idealised,

theoretical bilinear response of soil to drained compression, allows the determination of Pois-

son’s ratio νvh. The first line corresponds to the elastic behaviour of the soil and its inclination is

dependent on Poisson’s ratio, as shown in Fig. 6.4. The second segment represents the post-yield

plastic behaviour, with its slope determined by the dilatancy angle [164].

In the obtained results the relation between axial and volumetric strain is nonlinear, due to

stiffness barotropy. Therefore, the values of Poisson’s ratio must be determined based on the

initial inclination of the plotted curves. The presented values of νvh correspond to the definition

provided in Eq. 5.33. Poisson’s ratio νvh is inversely proportional to the applied values of αG

and β. Conversely, the parameter ||ε||sh does not affect the elastic constants, therefore, the

obtained value νvh = 0.2 is determined by the assumed values of αG = 1.0 and β = 0.5.

6.1.2 Radial stress path tests

The influence of the initial inherent cross-anisotropy αG and the initial stress state K0 on

stiffness is studied through triaxial radial tests in drained conditions. Stiffness changes are

presented in a form of isolines of accumulated generalised strain ε (Eq. 5.66). The procedure of

the test is analogous to that described in Sec. 5.2.

The effect of αG on stiffness changes is shown in Fig. 6.5. Radial drained paths start at

the isotropic stress point p = 100 kPa. Three values of the cross-anisotropic coefficient αG =

0.7, 1.0, 2.0 are taken into consideration. In the case of the isotropic material (αG = 1.0), the

soil response is generally uniform, with the greatest changes in stiffness being noticeable when

the sample is subjected to significant isotropic loading. In contrast, for anisotropic samples,

considerable influence of αG on soil stiffness is visible. In the case of αG = 0.7, where the

stiffness is greater in the vertical direction, the smallest change in strain is observed for the path

inclined ω = 60◦ to the p axis. This path almost reflects the conditions of triaxial compression,

where the highest axial stiffness is obtained when αG = 0.7 (see Fig. 6.1d). For αG = 2.0, the

lowest strain generation is conducted for paths inclined ω = −30◦,−60◦ to the p axis, for which

horizontal stress predominates. For the path ω = 60◦, the obtained stiffness changes are the

largest as compared to other cases, αG = 0.7, 1.0.

The influence of stress-induced anisotropy on stiffness is presented in Fig. 6.6. The sample

is subjected to the initial isotropic (K0 = 1.0), anisotropic active (K0 = 0.5) and anisotropic
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Fig. 6.5: The influence of initial inherent stiffness cross-anisotropy αG on stiffness changes presented in a form of

accumulated generalised strain ε obtained from the simulation of drained triaxial radial stress paths

passive (K0 = 2.0) stress conditions. It is apparent that the initial stress state affect the stiffness

changes as the obtained isolines patterns centre around the respective K0 lines.

6.1.3 Stress history tests

The influence of the recent stress history on stiffness degradation is presented in Fig. 6.7 for

different values of cross-anisotropy coefficient αG = 0.7, 1.0, 2.0. The obtained S-curves present

the soil response to the last 0X path. Stiffness is described in a form of the derivative dq/dεq,

which decays with deviatoric strain εq. The analysis includes a simulation of four different stress

paths, which are presented in Fig. 6.7. The exact course of each path is described in Sec. 5.2.

The influence of cross-anisotropy coefficient αG on stiffness degradation induced by recent

stress history is evident. The stiffness calculated for the D0X path is the highest in all cases due

to unloading occurring before the final 0X loading. However, the soil response to the remaining

tests is highly dependent on αG. In the case of the isotropic material, αG = 1.0, stiffness

degradation curves obtained from A0X and C0X simulations are similar, as the path 0X is

preceded by isotropic loading of the same stress increment ∆p = 50 kPa. Since no direction

changes occur in the stress space, the lowest value of stiffness is obtained for the B0X analysis.
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Fig. 6.6: The influence of initial stress conditions K0 on stiffness changes presented in a form of accumulated generalised

strain ε obtained from the simulation of drained triaxial radial stress paths

For αG = 2.0, the value of stiffness obtained for the A0X test is much higher, as compared

to the isotropic case. Moreover, the stiffness degradation calculated from the C0X and B0X

analyses is analogous and significantly lower than for the A0X and D0X. This behaviour suggest

that, in the case of high horizontal stiffness, greater stiffness degradation is obtained when the

sample is subjected to the compressive loading prior to the final shearing.

When the sample exhibits greater vertical stiffness, αG = 0.7, this pattern is completely

different. The soil response to the C0X test is much greater than in other cases and is comparable

to the D0X simulation. The lowest stiffness is obtained for the A0X path, with slightly higher

values calculated from the B0X test. This behaviour can be explained by the shape of the

isolines of accumulated generalised stain ε in Fig. 6.5. For a small compressive isotropic stress

increment ∆p, changes in stiffness are insignificant, but with isotropic unloading, strain is

generated rapidly.

The influence of αG is also notable in the shape of the calculated S-curves. The degradation

of isotropic material occurs evenly - there is no increase in stiffness just before the stepwise

degradation, as in the case of αG = 2.0. In contrast, for αG = 0.7, this trend is reversed - the

stiffness degrades continuously up to the drop. The highest stiffness values for all paths are



88 6 Verification of the AHEBrick model in element tests and exemplary BV problems

A0X

B0X

C0X

D0X

A0X

A0

X

150

50

-50

200

200 200

200

250

B0X

C0X D0X

C 0

X

0

X

0

X

D

B

Fig. 6.7: The influence of the recent stress history on the stiffness degradation, presented as a relation between derivatives

dq/dεq and deviatoric strain εq. Three different values of the initial inherent cross-anisotropy coefficients αG = 0.7, 1.0, 2.0

are considered

obtained when αG = 0.7, and the lowest when αG = 2.0. However, the stiffness of the isotropic

sample is approximately the same as that for αG = 2.0.

6.1.4 Validation of the model with some laboratory test results

Model validation is additionally carried out through non-standard parameter calibration. It is

performed by simulating laboratory tests on singular material element and then adjusting the

soil response so it corresponds to the measured results. Adopted parameter values of a tested

soil are given in the corresponding figure. Presented in Fig. 6.8, calibration performed for two

London Clay units, B2 and A3, is based on the laboratory test results presented in [67]. By
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Fig. 6.8: Calibrations of the AHEBrick model stiffness and strength parameters for two units of London Clay: a) unit

B2, b) unit A3. The obtained calculations are compared to the undrained triaxial compression test results [67]

matching the S-shaped curves, defining degradation of the secant undrained Young’s modulus

Es
uv with vertical strain εv it is possible to obtain the values of the following stiffness parameters:

Gref
vh, pref, ||ε||sh, Gref

vhtmin. Anisotropy parameters αG, β and shear strength constants c, φ, ψ are

determined through simulation of undrained stress path in p − q plane. The overall results

obtained from numerical simulations show a very good agreement to the laboratory data. The

calculated value of the inherent cross-anisotropy coefficient αG = 2.0 is consistent with the

values of αG presented in Tab. 3.1. Furthermore, according to [67], the average value of αG,

obtained from laboratory tests is considered to be αG = 2.0.

The results of analysis conducted on Vallerrica Clay and Todi Clay are shown in Fig. 6.9.

Both soils were tested as part of the same research project, described in [36]. Undrained com-
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Fig. 6.9: Calibrations of the AHEBrick model stiffness and strength parameters compared to the undrained triaxial

compression test results conducted on a) Vallerrica Clay, b) Todi Clay [36]

pression tests on Vallerrica Clay were carried out for three samples subjected to different initial

isotropic stress: p0 = 58 kPa, p0 = 200 kPa, p0 = 428 kPa. Parametric calibration was per-

formed based on stress paths in p− q plane and compression curves εv − q. The adopted value

of αG = 1.4 gives satisfactory results, as the initial inclination of stress paths obtained from

the laboratory tests and the numerical simulations is consistent. Additionally, the initial stiff-

ness values are a very good match to the test data, in particular for samples consolidated to

p0 = 200 kPa and p0 = 428 kPa stress conditions. In contrast, for larger strains the calculated

response deviate substantially from the measurements.
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The same set of laboratory tests was performed on Todi Clay. Tests were carried out for

initial stress conditions of p0 = 200 kPa and p0 = 443 kPa. The simulated stress path curves

match the experimental results closely, indicating that the chosen anisotropy parameters αG, β

are appropriate. However, the stiffness values do not show the same level of agreement, as the

initial stiffness in the simulation is too high.

The influence of bedding plane orientation on material properties

Triaxial compression tests on anisotropic soils can be conducted on samples cut at different

orientations relative to the bedding plane. Typically, samples compressed in directions normal

(S-sample, θ = 0◦) and parallel (P-sample, θ = 90◦) to the plane of isotropy are examined. In

triaxial test simulations on a single element, only a S-sample can be modeled under axisym-

metric conditions, due to its uniform deformation, see Fig. 6.10. In contrast, simulating triaxial

compression on a P-sample results in a non-uniform radial strain generation. Such behaviour

can be only be modelled as element test assuming three-dimensional calculations on a regular

hexahedral element [45]. Samples cut at angles other than θ = 0◦ or θ = 90◦ are referred to

as Z-samples, with θ = 45◦ being the most commonly tested orientation. When testing such

samples, shearing and non-uniform deformation are already generated during isotropic con-

solidation. For this reason, mechanical properties of Z-samples cannot be determined through

element tests. Instead, they must be analysed by simulating the full triaxial compression test,

incorporating the appropriate geometry and boundary conditions [87].

The inclination angle of the plane of isotropy θ has a significant impact on the response of

soil in undrained conditions. As shown in Fig. 6.10, the stress path for the S-sample is directed

maximally to the left, as the generation of water pressure in the pores during compression is

then the greatest. On the other hand, in the case of the P-sample, the pore water pressure is

S-sample
S-sample

P-sample

P-sample

failu
re

 crite
rio

n

Fig. 6.10: Triaxial compression test conducted on samples cut at different angles relative to bedding plane orientation.

Deformation of S-sample is uniform, whereas in case of P-sample, the radial strain generation is influenced by αG

coefficient. Due to differences in pore pressure, the course of the obtained undrained stress paths and the resulting shear

strength is dependent on the bedding plane orientation [132, 169]
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Fig. 6.11: Calibrations of the AHEBrick model stiffness and strength parameters compared to the undrained compression

test results on London Clay: a) S-samples, b) P-samples [176]

the lowest, resulting in the path being directed maximally to the right. The orientation of the

stress paths obtained for intermediate inclinations is within the range defined by θ = 0◦ and

θ = 90◦ [87, 168].

The following parametric calibration is based on the results of triaxial compression tests

conducted on S- and P-samples. The microstructure tensor M is defined according to Eq. 5.3,

however, in case of θ = 0◦, it simplifies to M = diag(0, 1, 0). In Fig. 6.11 the stress paths in p−q

plane and compression curves εv − q under undrained conditions are presented for London Clay

[176]. The samples were subjected to isotropic consolidation p0 = 400 kPa and then compressed.

The calculated stress paths acquired for the adopted anisotropy and strength parameter values

show strong consistency with the stress paths obtained from laboratory tests on both S- and
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Y5 (P-sample)

Y7 (P-sample)

model
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Fig. 6.12: Calibrations of the AHEBrick model stiffness and strength parameters compared to the undrained compression

test results on Oxford Clay: a) S-samples, b) P-samples [132]

P-samples. The calibrated stiffness parameters also match the test results closely, particularly

for the P-sample tests, where the measured and calculated compression curves nearly overlap.

Furthermore, the soil stiffness values and the cross-anisotropy coefficient αG = 2.0 correspond

well to those determined through the parameter calibration on London Clay shown in Fig. 6.8.

The simulations of triaxial compression tests on Oxford Clay samples, presented in Fig.

6.12, are compared to laboratory data obtained from [132]. Laboratory tests were conducted

on two S-samples and two P-samples, isotropically consolidated to p0 = 100 kPa. The best

agreement between the calculated and measured stress paths was obtained for parameters

αG = 2.3 and β = 0.55. Although the value of parameter αG = 2.3 is relatively high, similar
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(a)

(b)

S-sample
P-sample
model (S-sample)
model (P-sample)

Fig. 6.13: Calibrations of the AHEBrick model stiffness and strength parameters compared to the undrained compression

test results on Opalinus Clay: a) samples isotropically consolidated to p0 = 4.0 MPa, b) samples isotropically consolidated

to p0 = 2.0 MPa [87]

value has been reported in [29]. The initial inclination of the stress paths is consistent between

the tests and calculations, though the discrepancies become more pronounced along with the

increase of deviatoric stress q. In the case of compression curves obtained for the assumed

stiffness parameter values, the fit between the calculation and laboratory results is very good,

in particular for S-samples, where the soil behaviour is reproduced with high accuracy.

The laboratory tests, illustrated in Fig. 6.13, were performed on Opalinus Clay samples

consolidated isotropically to p0 = 4 MPa and p0 = 2 MPa [87]. The adopted strength parameters

φ and c are quite high, but they correspond well to the values obtained from laboratory tests

reported in [168]. The initial inclination of the stress paths, resulting from αG = 1.77 and
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β = 0.55, is consistent with the laboratory data, however, as the value of q increases, the

calculated stress paths begin to deviate from the measurements. The remaining parameters

were determined on the basis of compression curves. The soil response for the defined values is

satisfactory compared to measured curves. Although the assumed value of the initial stiffness

Gvh is generally high, it remains reasonable, as Opalinus Clay can be classified as both soil and

rock.

6.2 Exemplary geotechnical BVPs

In this section the influence of anisotropy on soil-structure interaction is examined by analysing

simple geotechnical boundary value problems. The influence of the soil response is investigated

for three values of the inherent anisotropy coefficient αG = 0.7, 1.0, 2.0 and three initial stress

states K0 = 0.5, 1.0, 2.0. The remaining model parameters are kept constant and are listed in

Tab. 6.2. The parameter values αG = 0.7 and K0 = 0.5 do not occur in stiff overconsolidated

soils. Nevertheless, they are included in this analysis in order to fully investigate the behaviour

of the model.

Table 6.2: Set of the AHEBrick model parameters used in the analysis of the exemplary boundary value problems

Parameter Clay

Small strain stiffness

Gref
vh [kPa] 50000

β [-] 0.5

αG [-] 0.7, 1.0, 2.0, 3.0

pref [kPa] 100

Stiffness degradation
Gref

vhtmin [kPa] 5000

||ε||sh [-] 0.0007

Shear strength criterion

φ [◦] 27

c [kPa] 10

ψ [◦] 5

pte [kPa] 0

Unit weight and initial stress state
γ [kN/m3] 20.0

K0 [-] 0.5, 1.0, 2.0

In order to examine the influence of pure inherent cross-anisotropy on deformation different

values of αG are considered at the isotropic stress state K0 = 1.0. In contrast, stiffness changes,

induced by the initial stress conditions K0, can be investigated considering isotropic microstruc-

ture αG = 1.0. Additionally, the AHEBrick model is able to simulate pure stress-induced

anisotropy if soil microstructure and initial stress state are isotropic (αG = 1.0, K0 = 1.0). In
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order to isolate this effect, the comparison to the reference stress-dependent isotropic stiffness

is needed. It can be introduced via a hypoelastic law using Hooke’s linear elastic stiffness with

a fixed Poisson’s ratio ν and a reference Young’s modulus Eref that increases with mean stress

(see Eq. 2.4). Stiffness parameters of hypoelastic isotropic kernel are selected so they correspond

to the anisotropic AHEBrick material, with isotropic microstructure αG = 1.0, shown in Tab.

6.2: Eref = 120000 kPa, ν = 0.2, m = 0.5, pref = 100 kPa, Eref
min = 0.1 · Eref = 12000 kPa. In

some cases, mixed anisotropy (αG 6= 1.0, K0 6= 1.0) is examined to check soil response to the

most complex conditions.

The findings of the following analyses have also been published in [46] and [101] for cases of

tunnel drilling and open-pit excavation.

6.2.1 Tunnel drilling

The influence of stiffness anisotropy on tunneling problems is considered in plane strain and

three dimensional conditions. In order to obtain the comparable soil response, the same geomet-

rical, material and flow properties are assumed for both cases. In the used FE code [26], mesh

regularisation cannot be performed. Therefore, to prevent mesh-dependent behaviour, a process

was used that involved first applying a fine regular mesh throughout the entire domain. Next,

the size of elements located furthest from the tunnel was increased until the results changed

significantly.

1
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0
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1
7
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Fig. 6.14: Geometry and FE mesh of two analysed tunnel cases in plane strain conditions: (a) deep tunnel: 1213 15-node

triangular elements, 9992 nodes, (b) shallow tunnel: 1162 15-node triangular elements, 9578 nodes



6.2 Exemplary geotechnical BVPs 97

Plane strain model

In plane strain conditions, a 5.0-m-diameter tunnel is modelled at two overburden depths: 16.0

m (deep tunnel) and 9.0 m (shallow tunnel). The geometry of analysed cases is presented in Fig.

6.14. Due to the symmetry, only one half of the problem, with the dimensions of 50.0 m×31.0 m,

is considered. The behaviour of the primary 30.0 m thick clay layer is described with the

AHEBrick model. The material parameters are presented in Tab. 6.2. In order to avoid the

stiffness changes at the low stress level, a drained 1.0 m layer of granular fill at the surface

is modeled with a standard Mohr-Coulomb material (E = 70000 kPa, ν = 0.2, φ = 30◦, c =

3.0 kPa, ψ = 0.0◦, γ = 18.0 kN/m3). Around the tunnel face a 0.2 m thick concrete lining is

applied (plate elements, EA = 6 ·106 kN/m, EI = 20 ·103 kNm2/m, ν = 0.2). The groundwater

table is located 1.0 m below the surface. No-flow boundary conditions are applied on the bottom

and sides of the FE domain and seepage is allowed along the tunnel liner.

The tunnel boring machine (TBM) excavation is simulated via the lining contraction method

available in the FE code [26]. In the first calculation phase, the soil and water within the

tunnel face are deactivated and the lining is installed by the activation of plate elements.

Fig. 6.15: Deep tunnel; the influence of the inherent cross-anisotropy coefficient αG on the settlement uy and horizontal

displacement component ux profiles along the selected cross-sections. The initial isotropic stress state K0 = 1.0 is

considered
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Fig. 6.16: Shallow tunnel; the influence of the inherent cross-anisotropy coefficient αG on the settlement uy and horizontal

displacement component ux profiles along the selected cross-sections. The initial isotropic stress state K0 = 1.0 is

considered

In the subsequent phase, the lining is uniformly contracted by 1.0 % to mimic tunneling-

induced deformation. The numerical simulations are carried out as a plastic calculation type

(undrained), for which consolidation and the effect of time are omitted.

The influence of pure initial inherent cross-anisotropy is examined for different values of

cross-anisotropy coefficient αG = 0.7, 1.0, 2.0, 3.0, at the isotropic stress state K0 = 1.0. The

obtained results are presented in a form of settlement troughs and horizontal displacement

profiles for the selected cross-sections. Fig. 6.15 illustrates the obtained deformation for the

case of the deep tunnel.

The influence of cross-anisotropy coefficient αG is obvious. As the value of αG increases,

the surface settlement troughs (y = −1.5 m) become both deeper and steeper; the same trend

holds at y = −7.5 m. However, directly above the tunnel lining (y = −16.0 m) the inverse

behaviour can be observed - the lower the αG value is, the steepness and depth of the trough is

greater. Moreover, along the cross-section located directly below the tunnel (y = −21.0 m), the

soil heave substantially increases for the low values of αG. Additionally, the deformation near

the tunnel gets noticeably irregular for large values of cross-anisotropy coefficients. In terms of

horizontal displacements a pattern is reversed - for the profile closer to the tunnel (x = 3.0 m),
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Fig. 6.17: Deep tunnel contraction phase; maps of stiffness degradation for different values of αG at isotropic stress

state K0 = 1.0. The intensity of stiffness degradation is indicated by the number of active bricks nab

larger αG value produces greater lateral movement, whereas farther out (x = 7.5 m) smaller

horizontal deformations are obtained with the increase of αG. Fig. 6.16 shows the influence

of pure initial inherent cross-anisotropy on soli deformation induced by the shallow tunnel

drilling. The overall deformation patterns and their sensitivity to αG mirror the results of the

deep tunnel analysis, however the settlement troughs are more extensive and less smooth. It is

due to the proximity of the tunnel crown to the ground surface which results in the appearance

of the localised shear zones.

The influence of pure cross-anisotropy on stiffness degradation is also apparent. The maps of

stiffness degradation, after the lining contraction calculation phase, are presented for deep and

shallow tunnel analyses in Figs. 6.17 and 6.18, respectively. Each color indicates the number of

active bricks nab that are being pulled, where dark blue means the maximum initial soil stiffness

Gref
vh, and red means that all 10 bricks are active and the stiffness has reached its minimum value

Gref
vhtmin. In the case of a deep tunnel, the region where the minimum stiffness (nab = 10) is

reached, changes its shape proportionally to the value of cross-anisotropy coefficient αG. When
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Fig. 6.18: Shallow tunnel contraction phase; maps of stiffness degradation for different values of αG at isotropic stress

state K0 = 1.0. The intensity of stiffness degradation is indicated by the number of active bricks nab

αG = 0.7, indicating higher stiffness in the vertical direction, this region stretches vertically.

For isotropic stiffness αG = 1.0, the region is uniformly distributed. When the horizontal

stiffness is higher (αG > 1.0), the area of minimum tangent stiffness Gref
vhtmin becomes stretched

horizontally around the tunnel. This correlation may be the cause of the change in the steepness

of the obtained settlement profiles. In addition, for high values of αG some zones of localised

unloading (nab = 0) occurs, which could explain the irregular shape of settlement troughs in

the direct vicinity to the tunnel lining. The stiffness degradation maps, obtained for the shallow

tunnel calculations, are characterised by the presence of numerous localised unloading regions

that develop, not only in the immediate vicinity of the tunnel, but within whole FE domain.

Furthermore, for very high values of cross-anisotropy, αG = 3.0, under the tunnel lining, the

unloading occurs up to the bottom boundary of the model.

The influence of initial stress state K0 on the surface settlement profiles is illustrated for

the case of the deep tunnel in Fig. 6.19, and for the shallow tunnel example in Fig. 6.20. The

values K0 = 0.5, 1.0, 2.0 are analysed for different anisotropy coefficients αG = 0.7, 1.0, 2, 0. In
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isotropic

hypoelastic kernel

Fig. 6.19: Deep tunnel; the influence of the initial stress state K0 on the surface settlement uy profiles. Different values

of cross-anisotropic coefficient αG are considered. The response of the model with purely isotropic hypoelastic stiffness

is shown for comparison (αG = 1.0)

all cases, the settlement troughs obtained for K0 = 0.5 show the highest depth and steepness,

with the maximum deformation occurring at K0 = 0.5 and αG = 2.0. Conversely, at K0 = 2.0,

the troughs arch upwards over the tunnel and heave above the original ground level can be

observed for αG = 0.7 in case of the deep tunnel, and for αG = 0.7, 1.0 for the shallow tunnel.

In order to determine the influence of pure stress-induced anisotropy, the comparison of

the results obtained from the calculations conducted for the fully isotropic hypoelastic kernel

and AHEBrick material, that exhibits pure stress-induced anisotropic behaviour (αG = 1.0),

has been conducted. Illustrated in Figs. 6.19 and 6.20 settlement profiles nearly overlap, which

means that the influence of stress-induced anisotropy on tunnel drilling deformation is negligible

and appears to have no practical importance.

isotropic

hypoelastic kernel

Fig. 6.20: Shallow tunnel; the influence of the initial stress state K0 on the surface settlement uy profiles. Different

values of cross-anisotropic coefficient αG are considered. The response of the model with purely isotropic hypoelastic

stiffness is shown for comparison (αG = 1.0)
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The effect of stress-induced anisotropy is also insignificant in terms of stiffness degradation,

shown in Fig. 6.21 (deep tunnel) and Fig. 6.22 (shallow tunnel). The maps obtained for the

isotropic hypoelastic kernel analysis are almost identical to that calculated with the AHEBrick

material model, for αG = 1.0 and K0 = 1.0. Slight differences are apparent in the case of

the shallow tunnel - here it can be seen that stress-induced anisotropy is responsible for the

appearance of localised shear zones. In general, the largest unloading occurs for K0 = 0.5, and

for the shallow tunnel analysis, the soil under the tunnel face achieves its maximum stiffness.

The deformation and bending moment distribution of the deep tunnel lining, subjected to

1% contraction, is presented in Fig. 6.23, for αG = 0.7, 1.0, 2.0, 3.0 and K0 = 0.5, 1.0, 2.0. Under

the initial isotropic stress state (K0 = 1.0), the polar graphs of lining deformation and bending

moments are distributed horizontally, if αG < 1.0, and vertically for αG > 1.0. In case of

0 1 2 3 4 5 6 7 8 9 10

number of active bricks (      ) 

isotropic hypoelastic kernel

Fig. 6.21: Deep tunnel contraction phase; maps of stiffness degradation for different values of initial stress state K0 and

inherent isotropic material αG = 1.0. The response of the model with purely isotropic hypoelastic stiffness is shown for

comparison. The intensity of stiffness degradation is indicated by the number of active bricks nab
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Fig. 6.22: Shallow tunnel contraction phase; maps of stiffness degradation for different values of initial stress state K0

and inherent isotropic material αG = 1.0. The response of the model with purely isotropic hypoelastic stiffness is shown

for comparison. The intensity of stiffness degradation is indicated by the number of active bricks nab

inherent isotropy (αG = 1.0) the liner contracts uniformly and bending moments are negligible.

Given K0 = 0.5, the shape of all graphs is always vertical and this effect is magnified with

increase of αG. If initial stress is higher in horizontal direction (K0 = 2.0), the deformation

and bending moment distribution is horizontal for αG ≤ 1.0, however for high cross-anisotropy

coefficient αG = 2.0, the deflection is nearly isotropic and the obtained moments are very small.

The same analysis, conducted for the shallow tunnel is illustrated in Fig. 6.24. The obtained

response for K0 = 2.0 is nearly identical to the deep tunnel calculations. For K0 = 0.5, 1.0 the

lining deformation and bending moments are smaller and their shape is less pronounced. The

biggest differences are seen for K0 = 0.5 and αG = 0.7, as for this case almost no bending

moment occurs.
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Fig. 6.23: Deep tunnel lining subjected to 1% contraction; the influence of cross-anisotropy coefficient αG and initial

stress conditions K0 on total deformation ||u|| (left side of each graph) and bending moments M (right side of each

graph)

3D model

The influence of anisotropy on tunnel induced deformation is also tested for the 3D case.

The obtained results pose as a comparison to plane strain analysis. Moreover, the influence

of principal stress rotations on deformations at the tunnel face under varying inherent cross-

anisotropy coefficient αG is also examined.
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Fig. 6.24: Shallow tunnel lining subjected to 1% contraction; the influence of cross-anisotropy coefficient αG and initial

stress conditions K0 on total deformation ||u|| (left side of each graph) and bending moments M (right side of each

graph)
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Fig. 6.25: Geometry and FE mesh of the exemplary single deep tunnel problem in 3D conditions, 42538 10-node

tetrahedral elements, 67659 nodes. Four lengths of tunnel segments are considered

The geometry of the 3D model, shown in Fig 6.25, is created by the extrusion of the plain

strain geometry 30 m along the tunnel axis, while maintaining comparable mesh density. The

deep tunnel analysis under initial isotropic stress conditions K0 = 1.0 and three values of

inherent cross-anisotropy coefficients αG = 0.7, 1.0, 2.0 is considered. The calculation phases

are analogous to the 2D simulations. The lining is modeled as a single segment of length 2 m,

6 m, 10 m, or 14 m (Fig. 6.25), which is then subjected to 1% tunnel contraction. In order to

support the tunnel face, distributed horizontal back pressure is applied. Its value increases with

along the tunnel depth - 170 kPa at the tunnel crown to 230 kPa at the bottom.

The deformation of the 3D numerical analysis is presented in Fig. 6.26 in a form of settle-

ment troughs and surface plots of the horizontal displacement for the selected cross-sectional

planes. The results obtained from 2D calculations, plotted as a dashed line, are shown for the

comparison. Just as in 2D model, the depth and the steepness of the settlement troughs is

influenced by the value of the cross-anisotropy coefficient αG. Additionally, the depth of the

settlement increases along with the length of the tunnel segment, and for 14 m, the 3D and 2D

profiles nearly coincide. Horizontal deformation is shown for a cross-sectional plane located in

the tunnel vicinity (x = 3.0 m). For αG = 0.7, 1.0 the magnitude of the horizontal displacements

is not influenced by the segment length, whereas when αG = 2.0 the deformation increases with
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Fig. 6.26: The influence of the inherent cross-anisotropy coefficient αG on the settlement uz and horizontal displacement

component ux surface plots in the selected cross-sectional planes obtained in 3D model. The initial isotropic stress state

K0 = 1.0 is considered. In each graph, the deformations are shown after 1.0% lining contraction of 2, 6, 10 and 14 m long

single tunnel sections. The results from plane strain analysis, plotted as a dashed line, are shown for the comparison
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the length of the tunnel. Just as for the settlement troughs, the 3D and 2D analysis are almost

the same for the longest segment.

6.2.2 Open-pit excavation

The geometry of the 10-m-depth open-pit excavation problem is presented in Fig. 6.27. The

model symmetry is considered, hence, only half of the excavation, with the dimensions of

50.0 m × 20.0 m, is analysed. The mechanical behaviour of a 20.0 m thick undrained stiff clay

layer is described with the AHEBrick model. The material parameters are presented in Tab.

6.2. To improve slope stability, the value of cohesion has been increased to c = 20.0 kPa. The

groundwater level is set 1.0 m below the ground surface. The groundwater flow boundaries are

closed along the symmetry line and the bottom of the FE domain, while a constant water head

(-1.0 m) is imposed on the right boundary. Seepage is applied to the model surface and the

contour of the excavation.

The calculations are carried out in four phases of excavation and dewatering. The material

removal is simulated by deactivating the corresponding soil clusters and dewatering is achieved

by setting a new groundwater table at the level of the current excavation bottom, while it

stays constant on the right side of the domain (y = −1.0 m). The first excavation is 1.0 m

deep, whereas the remaining 3 are 3.0 m deep each. The numerical calculations are conducted

as fully-coupled flow analysis. Considering low value of permeability coefficient, kv = kh =

1 · 10−4 m/day, and the duration of each phase (10 days), the simulation can be assumed as

undrained.

The influence of pure inherent cross-anisotropy on the soil deformation induced by open-pit

excavation is examined for different values of cross-anisotropy coefficients αG = 0.7, 1.0, 3.0

and isotropic stress conditions K0 = 1.0. In Fig. 6.28 the comparison of the ground movement

contours after the excavation is presented. As a reference, the deformed mesh of a isotropic case

(αG = 1.0, K0 = 1.0) is considered. The more detailed material response is shown in Fig. 6.29
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Fig. 6.27: Geometry and FE mesh of the open-pit excavation problem: 2533 15-node triangular elements, 20503 nodes
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Fig. 6.28: The influence of inherent cross-anisotropy coefficient αG on soil deformation after 4 excavation phases. The

initial isotropic stress conditions K0 = 1.0 are considered

in a form of displacement profiles along the selected vertical (y = −0.05 m, y = −5.0 m, y =

−10.05 m, y = −14.5 m) and horizontal (x = 5.0 m, x = 12.5 m, x = 20.0 m, x = 30.0 m) cross-

sections. The greatest surface settlement, bottom heave, and horizontal displacement of the

excavation slope occur in the case of inherent isotropy (αG = 1.0). The response obtained for

αG = 0.7 shows significant similarities to isotropic material. The application of high value of

cross-anistropy coefficient (αG = 3.0), however, results in the lowest values of settlement and

horizontal displacements. Additionally, for this case, a localised heave above the ordinal surface

level can be spotted at the right boundary of the FE domain. However, given the range of the

considered αG values, the overall differences of the obtained model behaviour remain relatively

small and seem to be insignificant from the practical point of view.

The maps of stiffness degradation, for the selected values of αG and K0 = 1.0, are presented

in Fig. 6.30. In all cases, the lowest stiffness can be observed in the vicinity of the excavation

bottom, especially in the area adjacent to the slope. In this region the biggest soil heave occurs.

The greatest material strain happens when αG = 1.0, while for αG = 3.0 soil unloading is the

most pronounced. Despite those differences, the maps are generally very similar to each other.

Hence, inherent cross-anisotropy primarily influences the magnitude of stiffness degradation

but does not significantly affect the ground response.

The same set of FE analyses is performed testing the change of the initial stress conditionsK0

of the inherent isotropic material, αG = 1.0. The soil deformation profiles are presented in Fig.

6.31 for K0 = 0.5, 1.0, 2.0. Again, the deformed mesh for the isotropic case (αG = 1.0, K0 =

1.0) is considered as a reference. The obtained excavation bottom heave is comparable for
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Fig. 6.29: The influence of inherent cross-anisotropy coefficient αG on displacement profiles for selected vertical and

horizontal cross-sections. The initial isotropic stress conditions K0 = 1.0 are considered

all presented cases, though the magnitude of vertical displacement is marginally higher when

initial stress predominates in horizontal direction, K0 = 2.0, The slope heave is the greatest

for K0 = 0.5, 1.0, while the deeper surface settlement trough is generated when K0 = 2.0. The

influence of pure stress-induced anisotropy is tested by the introduction of the reference material

with isotropic hypoelastic stiffness, also illustrated in Fig. 6.31 as a ground deformation contour.

The obtained results strongly correlate with the isotropic case, which suggests that the effect of

stress-induced anisotropy to the open-pit excavation deformation is negligible. Therefore, shown

in Fig. 6.32, vertical and horizontal displacement profiles exclude the isotropic hypoelastic kernel

model. The material response at the cross-sections furthest from the excavation (x = 30.0 m and

y = −14.5 m), show significant similarities across all three analysed examples. Additionally, the

magnitude of soil heave at the bottom of the excavation is comparable. Notable differences in

ground deformation mainly occur in the vicinity of the excavation slope. The largest horizontal

displacement is observed when K0 = 2.0. In the cross-section located at the midpoint of the

slope (x = 12.5 m), the soil settlement is only apparent if the initial horizontal stress is higher.
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Fig. 6.30: Maps of stiffness degradation for different values cross-anisotropy coefficient αG at isotropic stress conditions

K0 = 1.0, obtained after the last excavation phase. The intensity of stiffness degradation is indicated by the number of

active bricks nab

Furthermore, heave at the excavation bottom near the slope is much smaller for K0 = 2.0,

compared to the other two cases, which exhibit almost identical deformation.

Fig. 6.33 illustrates maps of stiffness degradation for the analysed values of K0. To determine

the importance of the pure stress-induced anisotropy on stiffness changes, the response of the

isotropic hypoelastic model is shown, as a comparison. No notable differences are observed

between two isotropic cases, hence, the influence of stress-induced anisotropy is negligible.

Nevertheless, the effect of various K0 states on stiffness degradation is evident. In all cases,

0

10

20

30
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isotropic hypoelastic kernel 

Fig. 6.31: The influence of the initial stress state K0 on soil deformation after 4 excavation phases. The inherent isotropy

αG = 1.0 is considered. The response of the model with purely isotropic hypoelastic stiffness is shown for comparison
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Fig. 6.32: The influence of the initial stress state K0 on displacement profiles for selected vertical and horizontal

cross-sections. The inherent isotropy αG = 1.0 is considered

low stiffness value is obtained at the bottom of the excavation, and for K0 = 2.0, a localized

shear zone is clearly visible in this area. Along the excavation slope, a high value of stiffness

is observed for K0 = 0.5, 1.0, whereas, if K0 = 2.0, a substantial stiffness degradation occurs.

This suggests that, if initial stress is higher in the horizontal direction (K0 = 2.0), the obtained

slope heave is caused by horizontal displacement, and otherwise it is a result of soil unloading.

6.2.3 Supported excavation

The simulation of the supported excavation problem is conducted in plane strain conditions.

The geometry and FE mesh are presented in Fig. 6.34. Due to the symmetry only a half of the

model is calculated. The FE domain measures 80.0 m × 40.0 m, while the excavated area has a

width of 15.0 m and a depth of 20.0 m. The excavation is supported by a 25.0-m-long and 1.0-

m-thick concrete diaphragm wall, modelled as a plate element: EA = 30 · 106 kN/m, EI = 2.5 ·
106 kNm2/m, ν = 0.2. Additionally, at the centre of each excavated cluster a wall support prop

is installed (anchor elements, Lspacing = 3.0 m, EA = 2.7 ·106 kN). The mechanical properties of

the 39-m-thick clay layer are defined with the AHEBrick model and the corresponding material
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Fig. 6.33: Maps of stiffness degradation for different values of initial stress state K0 and inherent isotropic material

αG = 1.0, obtained after the last excavation phase. The response of the model with purely isotropic hypoelastic stiffness

is shown for comparison. The intensity of stiffness degradation is indicated by the number of active bricks nab

parameters are listed in Tab. 6.2. Analogous to the tunnelling problem simulation, a 1.0-m-thick

granular layer is placed above the clay to prevent stiffness variations caused by low stress levels

(material parameters are provided in Sec. 6.2.1). The groundwater table is located below the

granular fill (y = −1.0 m). Flow boundaries are closed along the model’s axis of symmetry

and at the bottom, while the side and top boundaries are open. Seepage is allowed along the

diaphragm wall.

The calculations are performed as a fully-coupled flow deformation analysis. In the first

phase, the wall installation is simulated by activating the plate elements and enabling the
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Fig. 6.34: Geometry and FE mesh of the supported excavation problem: 1581 15-node triangular elements, 13128 nodes
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interfaces around it. In each subsequent phase, excavation is advanced by 5 m, followed by

dewatering and the activation of prop elements. Dewatering is modeled by interpolating the

pore water pressure between the initial groundwater level and the current excavation depth for

all excavated clusters. Due to the low permeability of the clay layer (kv = kh = 1 · 10−4 m/day)

and the short duration of each calculation phase (first phase - 1 day, the remainder - 10 days

each), the analysis can be assumed as undrained.

The influence of pure initial inherent cross-anisotropy on soil deformation, induced by the

construction of a supported excavation, is examined for different values of cross-anisotropy

coefficient αG = 0.7, 1.0, 2.0 and the isotropic stress state K0 = 1.0. The obtained results are

presented in Fig. 6.35 in a form of settlement troughs and horizontal displacement profiles

for the selected cross-sections. In every case the value of vertical displacement is the highest

for the isotropic material, αG = 1.0 and the shape of the settlement troughs is the steepest.

The difference in soil response between αG = 0.7 and αG = 2.0, obtained at cross-sections

located directly below the granular fill (y = −1.0 m) and halfway down the diaphragm wall

(y = −10.0 m), is negligible, suggesting that soil, which exhibits anisotropic stiffness produces

similar response, regardless the value of αG. The calculated ground heave directly below the

excavation bottom (y = −20.5 m) and beneath the wall (y = −25.0 m), is the smallest for

αG = 0.7, however, the one for αG = 2.0 is comparable. Additionally, when αG 6= 1.0 the

resulting vertical displacement profiles within the excavation area are relatively flat. Horizontal

displacement is presented at sections located 5 m and 15 m (x = 20 m, x = 30 m) behind

the diaphragm wall, as well as at the center of the model (x = 40 m). In each analysis, the

calculated displacement is the greatest for the isotropic case. The differences between αG = 0.7

and αG = 2.0 are minor, though the smallest horizontal displacement profiles are observed for

αG = 2.0, despite this case corresponding to the highest horizontal stiffness Ghh.

The influence of pure cross-anisotropy on stiffness degradation, presented in Fig. 6.36, is also

apparent. In all cases, the minimum stiffness (nab = 10) is reached near the excavation basin.

For αG = 1.0, a substantial reduction in stiffness extends over a large portion of the model.

When αG = 0.7, the stiffness degradation at the excavation bottom is the smallest, however,

noticeable changes occur in soil located further away from the excavated zone. In contrast, if

αG = 2.0, the decrease in stiffness is largely confined to the excavation area. Additionally, when

αG 6= 1.0, no significant stiffness degradation near the ground surface occurs, which explains

the negligible differences in the calculated settlement troughs. From the obtained maps, it can

be concluded that for the example of supported excavation problem, the initial stiffness value,

determined by the coefficient αG, does not strongly influence the overall soil response. Instead,
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Fig. 6.35: The influence of the inherent cross-anisotropy coefficient αG on the settlement uy and horizontal displacement

component ux profiles along the selected cross-sections, induced by the construction of the supported excavation. The

initial isotropic stress state K0 = 1.0 is considered
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Fig. 6.36: Maps of stiffness degradation for different values of αG at isotropic stress state K0 = 1.0 obtained for the

example of the supported excavation construction. The intensity of stiffness degradation is indicated by the number of

active bricks nab

the rate of strain development and the associated stiffness degradation, which is also dependent

on αG, seem to be more important.

The influence of the initial stress state K0 on the deformation caused by the construction

of a supported excavation was investigated for K0 = 0.5, 1.0, 2.0, assuming an isotropic mi-

crostructure, αG = 1.0. Similar to the example shown in Fig. 6.35, the vertical and horizontal

displacement profiles, presented in Fig. 6.37, are calculated for selected cross-sections. For cross-

sections located at depths y = −1.0 m and y = −10.0 m, the deepest and steepest settlement

troughs occur at K0 = 2.0, while the smallest deformation is observed for the isotropic case

(K0 = 1.0). At K0 = 0.5, the settlement trough exhibits a gentle slope from the right boundary,

however, at a distance of approximately 30 m from the diaphragm wall, a sharp, almost circu-

lar decrease in settlement occurs. Soil heave obtained at the excavation bottom (cross-sections

y = −20.5 m and y = −25.0 m), is roughly twice as large for K0 = 2.0 than for K0 = 0.5, 1.0,

which show very similar results. In case of horizontal displacement profiles, the largest deforma-

tion is again associated with K0 = 2.0. The ground movement for K0 = 0.5, 1.0, is comparable

down to about half the model depth. Below this depth, however, the displacement ux becomes
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Fig. 6.37: The influence of the initial stress conditions K0 on the settlement uy and horizontal displacement component

ux profiles along the selected cross-sections, induced by the construction of the supported excavation. The inherent

isotropy αG = 1.0 is considered
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Fig. 6.38: Maps of stiffness degradation for different values of K0 and isotropic material αG = 1.0 obtained for the

example of the supported excavation construction. The intensity of stiffness degradation is indicated by the number of

active bricks nab

greater for K0 = 0.5, although these differences diminish with increasing distance from the

excavation.

The influence of pure stress-induced anisotropy is investigated by the comparison of the

isotropic AHEBrick material to the reference hypoelastic isotropic material. Soil response ob-

tained for hypoelastic model is smaller than for the case of αG = 1.0, K0 = 1.0. This suggests

that the importance of stress-induced anisotropy on soil deformation is substantial.

This effect is also evident in the stiffness degradation maps presented in Fig. 6.38. The

reduction in stiffness obtained with the hypoelastic model is considerably smaller than in the

case of isotropic AHEBrick material. In all analysed examples, the maximum stiffness decrease

occurs within the excavation area. However, if K0 = 2.0, a pronounced reduction in stiffness

extends beyond the excavation zone. For K0 = 0.5, a distinct shear zone develops, marking the

path of the slip zone, which may explain the abrupt settlement drop observed in Fig. 6.37.

The horizontal displacement ux and the bending moment M distribution in the diaphragm

wall are presented in Fig. 6.39 for combined cases of αG and K0. For each value of K0, an

additional curve is included to represent the behaviour of the hypoelastic model. In terms of
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Fig. 6.39: The influence of the inherent cross-anisotropy coefficient αG and initial stress conditions K0 on the horizontal

displacement ux and bending moments M in the diaphragm wall
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horizontal displacement, the largest values consistently occur for αG = 1.0, while for αG 6= 1

the results are very similar to one another. Taking into consideration a comparison between

the soil response for the isotropic AHEBrick material (αG = 1.0) and that calculated with the

use of the hypoelastic model, it can be concluded that stress-induced anisotropy demonstrates

the greatest influence on soil behavior in supported excavation cases. Moreover, this influence

appears to increase with higher values of initial stress levels. Overall, the obtained wall deflection

is substantially higher when initial horizontal stress exceeds the vertical one. In contrast, no

notable differences can be distinguished between horizontal displacement profiles calculated at

K0 = 0.5 and K0 = 1.0.

In the case of bending moment distributions, a clear trend is observed: the extreme values

of moments corresponding to the same αG increase with higher K0, with a particularly pro-

nounced rise at K0 = 2.0. Comparing responses obtained for isotropic materials, the influence

of stress-induced anisotropy becomes significant only under anisotropic initial stress conditions.

Conversely, for K0 = 1.0, the bending moments are similar in both shape and magnitude, which

indicates the influence of αG is marginal.



7

Application of the AHEBrick model in case

studies

In this section the AHEBrick model is validated against real geotechnical cases. The purpose

of such analysis is to verify the extent to which the adopted material model is able to reflect

reality. For this reason, the model geometry and construction procedure are closely based on

the data reported in literature. Additionally, values of material properties are obtained through

parameter calibration of laboratory test results. The results are then compared to corresponding

field measurements. That way the accuracy of the calculations can be determined.

The following analyses concern the cases of twin tunnel construction in London Clay [32, 33],

FE and HG-A tunnels in Opalinus Clay [43, 102, 115] and trial open-pit excavation in Oxford

Clay [70, 132].

7.1 Twin tunnels of the Jubilee Line Extension in

London Clay at St. James Park, London

Launched in 1994, the Jubilee Line Extension Project aimed to extend the underground line

by 15 km, from Green Park to the existing British Rail station at Stratford. This project pro-

vided an excellent opportunity to conduct a field study on the impact of excavation and tunnel

construction on ground response in urban areas. For this reason, a collaborative research pro-

gramme was established, as described in [31]. Two control sites were designated for the purpose

of taking field measurements: one located at St. James’s Park and the other at Southwark Park.

Both locations are characterised by completely different geological conditions, which allowed

for the investigation of the impact of tunnelling on clayey (St. James’s Park - London Clay)

and granular (Southwark Park - Woolwich and Reading deposits) soils. The sites were equipped

with the instrumentation capable of measuring ground movements (surface settlement points,

inclinometers and extensometers), as well as water pressure (piezometers) in the vicinity of the

tunnels. The full report on the obtained results was published in [32, 33].
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Given the nature of this research, out of the two control sites, the example of St. James’s

Park has been examined. It is a very well documented case study, with field data available

in [125, 156]. Additionally, the extensive research on the London Clay mechanical properties,

e.g. [56, 57, 67, 122, 124], has been carried out over the years, making this case exceptionally

suitable to use as a validation for numerous studies on tunneling simulations and new material

models, e.g.[4, 3, 16, 54]. The results of the following analysis have been published in [46].

Geometry and soil conditions

The simulation of the problem is carried out as a plane strain analysis. The model geometry and

FE mesh are presented in Fig. 7.1. The dimensions of the FE domain are consistent between

the examples found in literature, e.g. [15, 16, 4, 59], and have therefore been used in the

presented calculations. Two tunnels, each with a diameter of 4.85 m, were excavated in London

Clay using open-face shield and mechanical backhoe methods. A concrete lining, 0.17 m thick,
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Fig. 7.1: Plane strain geometry and FE mesh of the back analysed case study of the Jubilee Line Extension twin

tunnels in London Clay at St James’s Park (5682 15-node triangular elements, 45985 nodes). Axes A-C and E-G show

the position of measuring instrumentation (electrolevel inclinometers and rod extensometers)
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was applied to both tunnels. The tunnel axes are located 30.5 m (westbound) and 20.0 m

(eastbound) below the ground surface. Axes A-C and E-G show the placement of the selected

measurement instrumentation. Groundwater level is positioned 5.5 m under the ground surface.

No-flow conditions are applied at the bottom of the domain, whereas seepage is allowed at the

side boundaries and along the tunnel lining.

London Clay deposit is overburdened by 5.5 m of the made ground layer and 2.7 m thick

terrace gravel. Following [4, 16], these two materials are defined as:

• made ground - linear elastic model: E = 5000 kPa, ν = 0.3, γ = 18.0 kN/m3, K0 = 0.5;

• terrace gravel - Mohr-Coulomb model: E = 35000 kPa, ν = 0.2, c = 1 kPa, φ = 35◦, γ =

20.0 kN/m3, K0 = 0.5.

The mechanical properties of the two London Clay units (B2 - 10.5 m thick, and A3 - 33.8

m thick) are simulated with the AHEBrick material model. Parameter calibration was carried

out via a series of undrained triaxial compression element test based on the laboratory results

reported in [56, 67]. The detailed description of the calibration is presented in Sec. 6.1.4 and

the obtained results are illustrated in Fig. 6.8.

The initial stress conditions K0 of London Clay deposits were established taking into con-

sideration the related literature. Despite advances in laboratory and in situ testing, the proper

determination of K0 in overconsolidated soils remains a challenge. In the numerical analysis,

presented in [4], a constant value of K0 = 1.5 was adopted, following the findings in [69]. Con-

versely, in [16] and [59], a geological history of London Clay was reconstructed with the use

of the kinematic hardening models, which allowed to obtain the depth-dependent K0 profiles.

made ground

terrace gravel

London Clay unit B2

London Clay unit A3

bottom boundary of the FE domain

made ground

terrace gravel

London Clay unit B2

London Clay unit A3

bottom boundary of the FE domain

(a) (b)

Fig. 7.2: Prediction of K0 profiles with a use of kinematic hardening models: (a) the area between two bold black lines

shows the obtained range for 4 analysed models, after [16], (b) model response presented as a bold black line, after [59].

The expression by Mayne and Kulhawy [109] (gray bold dashed line) introduced as a comparison
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These profiles are illustrated in Fig. 7.2. In both cases, for unit A3, the K0 value ranges from

0.85 to 1.0, while for B2 unit this the variation is more pronounced, spanning from 0.5 to

1.2. Given that the AHEBrick model is designed to simulate the behaviour of anisotropic stiff

overconsolidated soils, it is not well suited to properly reproduce normally consolidated stress

conditions. Therefore, the initial isotropic stress state K0 = 1.0 has been adopted for both B2

and A3 units.

The AHEBrick model parameters for B2 and A3 units of London Clay are listed in Tab. 7.1.

Following [4], the values of permeability coefficients for London Clay and cover soils are shown

in Fig. 7.1. London Clay exhibits anisotropic permeability, which decreases with depth. Hence,

each London Clay unit has been subdivided into smaller layers to properly represent its flow

properties.

Table 7.1: Parameters of the London Clay B2 and A3 units simulated with the AHEBrick model

Parameter London Clay B2 London Clay A3

Small strain stiffness

Gref
vh [kPa] 48080 70000

β [-] 0.5 0.5

αG [-] 2.0 2.0

pref [kPa] 100 100

Stiffness degradation
Gref

vhtmin [kPa] 2000 7000

||ε||sh [-] 0.0009 0.0004

Shear strength criterion

φ [◦] 30 28

c [kPa] 15 55

ψ [◦] 5 5

pte [kPa] 0 0

Unit weight and initial stress
γ [kN/m3] 20.0 20.0

K0 [-] 1.0 1.0

Calculations

The construction of WB and EB tunnels is simulated analogously to the one described in

Sec. 6.2.1. First, the soil elements and pore water pressure are deactivated within the tunnel

face. The tunnel lining is installed by activating plate elements (EA = 4.7 · 106 kN/m, EI =

1.1·104 kNm2/m) and is next subjected to contraction. The applied values of the contraction are

based on the volume loss method. This approach assumes that the volume loss (vL), measured

at the ground surface, corresponds to the deformation of the soil, that surrounds tunnel, moving

into its boundary. Such value is typically expressed as a percentage of the tunnel’s theoretical

volume [15]. Generally, the calculations are conducted assuming the undrained conditions of
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defined soil deposits. In the utilised FE code [26], this behaviour is simulated by assigning a

high bulk modulus to the pore water. This results in the development of excess pore pressure,

effectively preventing changes in volumetric strain. Reported in [125], the prescribed values of

tunnel contraction are 3.3% and 2.9% in case of westbound and eastbound tunnel, respectively.

In the numerical analysis the following calculation phases were conducted:

1. Initial phase - introduction of the state variables, K0 stress conditions, hydrostatic water

conditions;

2. Construction of the WB tunnel, application of 3.3% tunnel contraction (undrained phase);

3. Consolidation phase ∆t = 256 days;

4. Construction of the EB tunnel, application of 2.9% tunnel contraction (undrained phase);

5. Consolidation phase ∆t = 415 days;

6. Consolidation phase ∆t = 3440 days;

7. Consolidation phase ∆t = 1831 days.

The included consolidation phases align with the actual site schedule.

Results

Fig. 7.3 shows the separate surface settlement troughs obtained immediately after the con-

struction of the WB and EB tunnels. The results of the initial analysis - assuming undrained

conditions for all soil layers - are represented by the solid bold black line (curve no. 1). The

comparison of the obtained soil response to the actual field measurements [125, 156] show the

high degree of agreement.

The cover soils, however, are non-cohesive and coarse-grained, so the assumption of undrained

conditions is not appropriate. Consequently, a second analysis was performed in which undrained

conditions were applied only to the London Clay layer, while the remaining soil layers were

treated as drained. The contraction values remained unchanged, 3.3% and 2.9% for WB and

EB tunnels, respectively. The resulting settlement troughs, shown as curve no. 2, are too deep,

exceeding the measured settlements at the tunnel centerline by 15% for the WB tunnel and

21% for the EB tunnel.

Recommended in [125], contraction values are considered to be unusually high [86, 155].

Therefore, the third analysis was conducted using the updated contraction values: 2.8% for

westbound tunnel and 2.4% for eastbound tunnel. The surface settlement profiles, represented

by curve no. 3, show the best agreement with the field data.

Following these findings, the remaining results exclude the case with all soils defined as

undrained (analysis no. 1). The comparison between the calculated vertical and horizontal
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Fig. 7.3: Surface settlement profiles following the separate construction of the westbound (left) and eastbound (right)

tunnels, showing a comparison between field measurements [125, 156] and the calculation results. Different behaviour of

cover soils and tunnel contraction values are considered

displacement components, obtained immediately after the undrained calculation phases of WB

and EB tunnel construction, and the corresponding field measurements along selected vertical

axes are presented in Figs. 7.4 and 7.5. Both examples of drained cover soil analyses are

considered. The soil deformation of the calculated cases is slightly higher compared to the

measurements, especially considering the horizontal displacement component. However, the

overall material response show great similarities to the field data. In addition, the differences

between results obtained from analyses 2 and 3 appear to be marginal from the practical point

of view.

The cumulative long-term settlement troughs, located 5.0 m below the ground surface, are

presented in Fig. 7.6. In this analysis the case of the reduced contraction values is considered.

The obtained soil response is shown as a total settlement value after each calculation phase,

including consolidation before and after the EB tunnel construction. These results are compared

to the field measurements found in [16]. The calculated soil deformation show a satisfactory

correlation with the field data only during the construction of WB and EB tunnels. However, the

settlement induced by ground consolidation is grossly underestimated. It is especially prominent

after 15.5 years (5686 days) from the EB tunnel construction - the calculated settlement troughs

are nearly two times smaller than the measured ones. Furthermore, the insignificant differences
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Fig. 7.4: The comparison of the field data [125] and the calculated vertical uy (axes A,B,C) and horizontal ux (axes

A,C) displacement components, obtained immediately after the westbound tunnel construction

between two last calculation phases indicate that the settlement stabilises after the period of

15 years, whereas this tendency is not observed in the real case.

Conclusions

Considering surface settlement troughs and displacement changes in the tunnel vicinity, the

results of the twin tunnel construction analysis show very good match to the measurements.

Both the depth and the shape of the calculated displacement profiles are comparable to field

data, suggesting that the AHEBrick model is capable of correctly simulating anisotropic stiff-

ness. The deformation obtained for short-term and undrained conditions is especially agreeable,

which from a practical perspective is desirable, as the most critical differential displacement
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occur during that time. Nevertheless, the final settlement values are strongly correlated with

the assumed contraction values and flow conditions. Ultimately, in order to reflect the actual

state, a very good geotechnical survey must be carried out beforehand. In contrast, long-term

settlement values are significantly underestimated, which means the model improvement is

needed.

contraction 2.9%

contraction 2.4%

EB tunnel, London Clay undrained

�ield measurements

2
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E

E

F G
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Fig. 7.5: The comparison of the field data [125] and the calculated vertical uy (axes E,F,G) and horizontal ux (axes

E,G) displacement components, obtained immediately after the eastbound tunnel construction
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consolidation �t=415 days

consolidation �t=1831 days

Fig. 7.6: The comparison between the measured [16] (lines with markers) and calculated (solid lines) cumulative long-

term total settlements profiles uy, obtained for the cross-section located 5.0 m under the surface. The case of the reduced

contraction values (analysis 3) is taken into consideration. The graph on the left depicts the soil response during the

construction of the WB and EB tunnels, while the graph on the right shows the settlements following the construction

of the EB tunnel

7.2 FE and HG-A tunnels in Opalinus Clay at Mt. Terri

Rock Laboratory, Switzerland

Numerous studies are currently being conducted with the aim of investigating soil suitability

for storing nuclear waste products. This type of research is being conducted at the Underground

Rock Laboratory (URL) in Mt Terri, Switzerland. It is a very extensive research project run by

the international consortium of various organisations from different countries, operating under

the auspices of the Swiss Federal Office for the Environment. The entire laboratory centre is

built in Opalinus Clay deposits. Over the years, research has been conducted there to determine

the hydrogeological, geochemical and geotechnical properties of this soil and its suitability to

store nuclear waste. The layout of the laboratory is presented in Fig 7.7. It is located 300 m

below the ground surface and it consists of various well-equipped and well-documented trial

tunnels. In this section two tunnels are analysed: the FE and HG-A tunnels (marked in the

figure).

Opalinus Clay is a heavily overconsolidated stiff clay, considered as a transitional material

between soil and rock [21]. Due to its complex geological history, Opalinus Clay is characterised

by pronounced bedding planes, often inclined to the horizontal direction. Hence, considering

its structure, it exhibit anisotropic stiffness and strength properties. This material has been

thoroughly tested in laboratory conditions, e.g. [51, 168, 169]. Additionally, an in-depth study
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Fig. 7.7: The layout of the Mt. Terri Underground Rock Laboratory (the picture is the property of the Federal Office

of Topography swisstopo [116]). The FE and HG-A tunnels are analysed in this section

of the material’s mechanical properties was carried out by the National Cooperative for the

Disposal of Radioactive Waste (Nagra), and the results of their experiments are presented in

an extensive set of technical reports.

The Opalinus Clay tunnelling cases are often used in order to validate constitutive models

which introduce strength anisotropy, e.g. [77, 98, 102]. By conducting back analyses of the

tunneling problems with the use of the AHEBrick material model, this will allow to determine

whether a model that accounts only for stiffness anisotropy can still produce satisfactory results

when simulating a material with both anisotropic stiffness and strength.

The mechanical properties of the Opalinus Clay deposits are simulated with the AHEBrick

material model. The set of the obtained material parameters is presented in Tab. 7.2. The

parametric calibration was conducted through undrained triaxial compression element tests

based on laboratory data reported in [87]. The results of the analysis are illustrated in Fig.

6.13 and the detailed description of the examinations is presented in Sec. 6.1.4. The material is

fully saturated. The soil permeability is very small and exhibits anisotropy in directions normal

and parallel to the bedding plane arrangement. However, the AHEBrick is not able to simulate

anisotropic permeability if material’s plane of isotropy is inclined to the horizontal direction.

Hence, the average value of hydraulic conductivity kx = ky = 0.0173 · 10−6 m/day [105] is

adopted.
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Table 7.2: Parameters of the Opalinus Clay simulated with the AHEBrick model

Parameter Opalinus Clay

Small strain stiffness

Gref
vh [kPa] 126600

β [-] 0.45

αG [-] 1.77

pref [kPa] 100

Strain degradation
Gref

vhtmin [kPa] 25300

||ε||sh [-] 0.0002

Shear strength criterion

φ [◦] 35

c [kPa] 1000

ψ [◦] 5

pte [kPa] 1

Unit weight γ [kN/m3] 24.7

Due to high depths, the ground surface is not modelled. The field stress applied in the

calculations corresponds to the in-situ stress conditions [43], which values, defined for the

model’s global axis, are: σyy = 6.5 MPa in vertical direction, σxx = 4.5 MPa in horizontal

direction and σzz = 2.5 MPa (out of plane). Initial stress conditions are posed as constant within

the analysed geometry, i.e. no gradients of effective stress and pore pressure are considered

(γ = γw = 0 kN/m3). Within the domain a very high stress level occurs, hence all external

boundaries are constrained. The groundwater flow is boundaries are open and seepage is allowed

along the tunnel circumference. In the FE code [26], it is possible to chose the type of excess pore

water pressure calculations. For cases of a material being subjected to considerable stresses, the

use of Biot’s effective stress concept is recommended. The applied parameter values are: bulk

modulus of water Kw = 1.0 GPa, Biot’s pore pressure coefficient αBiot = 1.0.

7.2.1 FE tunnel

The main motivation behind the construction of the Full-scale Emplacement (FE) tunnel was

to investigate the coupled effect of the thermo-hydro-mechanical response of soil to the tunnel

drilling [115]. The FE tunnel, 50 m long and 3 m in diameter, was excavated using a pneumatic

hammer and a roadheader [102]. The plane of isotropy of the Opalinus Clay deposit is inclined

θ = 33◦ to the horizontal direction. The geometry of the problem, shown in Fig. 7.8, was

adopted from [77, 98, 102]. The dimensions of the square FE domain are 50.0 m × 50.0 m. The

centre point of the tunnel is located in the middle of the model. The Fig. 7.8 shows the selected

field measurement equipment: two 6-m-long extensometers (EXT-01, EXT-02) in directions

normal and parallel to the bedding plane arrangement, two inclinometers (INCL-10, INCL-11)

located above the tunnel face and two piezometers (BFEA-02, BFEA-05). The tunnel is divided
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Fig. 7.8: Geometry and FE mesh of the FE tunnel drilling problem (4754 15-node triangular elements, 38265 nodes).

Red dots and purple lines represent the selected measurement devices (inclinometers, piezometers and extensometers)

into four sections: access section, plug section, test section and interjacent sealing section. The

analysis concerns soil response in the test section. In this section the shotcrete lining, with

thickness of 0.16 m, was applied.

Calculations

The numerical analysis consists of the following calculation phases:

1. Initial phase, field stress conditions;

2. Tunnel drilling, ∆t = 1 day;

3. Consolidation phase, fresh shotcrete, ∆t = 12 days;

4. Consolidation phase, stiff shotcrete, ∆t = 77 days.

All calculation phases are performed as consolidation analysis. Individual selected cross-

sections within the test section are analysed, therefore the duration of tunnelling is assumed

to be 1 day. The tunnel construction procedure is analogous to that given in Sec. 6.2.1. The

duration of the consolidation phases correlates with the times given in [102, 115]. The first

consolidation phase simulates short-term deformation of soil. During this phase, shotcrete lining

is applied, which material properties correspond to the stiffness of the fresh shotcrete. Long-

term deformation is considered during the 77-day consolidation phase. In this phase, cured
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shotcrete is taken into account. Mechanical parameters of the shotcrete lining are adopted from

[152]:

• fresh shotcrete: EA = 2912 kN/m, EI = 6.21 kNm2/m, ν = 0.2;

• cured shotcrete: EA = 4592 kN/m, EI = 9.80 kNm2/m, ν = 0.2.

Results

During construction, tunnel deformation was continuously monitored at selected convergence

measurement sections. The analysed cross-section (C4) was located at TM27.6 (27.6 m "tunnel

metre"). In this section, five observation points (P1-P5) were installed [102, 115]. Presented

in Fig. 7.9, measured tunnel lining convergences over a 90-day period are compared with the

corresponding calculated displacement. The presented deformation is scaled by a factor of 20.

Overall, the results show very good qualitative and quantitative agreement, particularly at

points P2-P4. In contrast, points P1 and P5 deviate significantly from the measurements. This

discontinuity
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Fig. 7.9: Tunnel lining convergence, obtained at points P1-P5, during a 90-day period: a) calculated deformation com-

pared to b) field data [115]. The deviation from the measurements at points P1 and P5 is attributed to the discontinuity

in the tunnel liner
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discrepancy is attributed to the failure of the shotcrete invert, which caused a discontinuity in

the lower tunnel wall [115].

The measurements of vertical displacement and pore water pressure, shown in Fig. 7.10,

were taken at TM31.0 [116]. Monitoring covered boring process of the entire tunnel, however,

Fig. 7.10 presents only the changes induced by the excavation at this section. For this reason,

the values of settlement are shown starting from zero. Most of the calculated settlement occurs

during the tunneling phase, with the remainder resulting from consolidation. In the real case,

rapid settlement was observed within the first week. Overall, the final calculated settlements

INCL 10

BFEA 02

INCL 11BFEA 05

EXT-01

L =
 6 m

E
X

T-0
2

L
 =

 6
 m

2
.7

5

1
.9

0

2.75

[m]

0.75 0.75 2.60

vertical displacement

radial displacement

pore water pressure

INCL 10

INCL 11

(a)

BFEA 02

BFEA 05

(b)

EXT-02

EXT-01

(c)

Fig. 7.10: The comparison between calculated and measured [116] settlement: a) uy, b) pore water pressure σpp, c)

radial displacement ur at TM31.0 section of the FE tunnel
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show good agreement with the measurements, particularly at point INCL-11. At point INCL-10,

however, a slight overestimation was noted.

Pore water pressure changes were recorded at two piezometers, BFEA-02, BFEA-05. The

initial pressure at the site was approximately σpp = −2150, kPa and it decreased as excavation

progressed. The calculated results show reasonable agreement only at the measurement point

BFEA-05, although the magnitudes are too small and any similarity becomes apparent only

after 30 days. At point BFEA-02, the calculated values are significantly overestimated.

The calculated radial displacement values differ by approximately 0.005 m. Larger displace-

ments were observed in the direction normal to the plane of isotropy (EXT-02), indicating that

the tunnel lining deformation is non-uniform and influenced by the orientation of the bedding

planes.

The influence of bedding plane inclination on tunneling induced deformation

The effect of the plane of isotropy inclination angle θ, relative to the horizontal direction,

on material response is examined by comparing the analysed case with a reference example,

where the bedding plane is horizontal (θ = 0◦). The deformation of the tunnel lining for two

consolidation phases is presented in Fig. 7.11. The obtained deflection is scaled 40 times. For

θ = 0◦, the deformation pattern is symmetrical about the y-axis. In contrast, when θ = 33◦,

the deformation is visibly inclined relative to the plane of isotropy. Due to the bedding plane
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Fig. 7.11: The comparison of tunnel lining deformation for two cases of bedding planes oriented θ = 0◦ and θ = 33◦ to

the horizontal direction
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Fig. 7.12: The comparison of excess pore pressure generation, after the tunnel drilling phase, for two cases of bedding

planes oriented θ = 0◦ and θ = 33◦ to the horizontal direction

inclination, the model cannot be simplified by assuming symmetry and analysing only half of

it. Furthermore, as consolidation progresses, the inclination of the deformation becomes more

pronounced.

The inclination angle of the bedding planes also influences the distribution of pore water

pressure. This effect is illustrated in Fig. 7.12, which presents maps of excess pore pressure

distribution after the first phase of tunnel excavation. Both the shape of the pressure dispersion

and the magnitude of the pore pressures vary with bedding plane orientation. For θ = 33◦, the

extreme pressure values are approximately 300 kPa lower than in the case of θ = 0◦.

The influence of the plane of isotropy inclination is clearly visible in the stiffness degra-

dation maps shown in Fig. 7.13. Considerable reduction in stiffness occurs during the tunnel

drilling phase, with the degradation most pronounced along the axis of symmetry defined by

the unit vector v. During consolidation, significant unloading develops at the depth of the tun-

nel face, along the plane of isotropy, as well as directly above and below the tunnel. Overall,

stiffness degradation is greater when θ = 0◦, whereas unloading induced by consolidation is

more pronounced when θ = 33◦.

Conclusions

The obtained settlement profiles and lining deformations show a high degree of consistency

with the measurements. Significant differences in this case can be attributed to the tunnel
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Fig. 7.13: Maps of stiffness degradation obtained for two cases of bedding planes oriented θ = 0◦ and θ = 33◦ to the

horizontal direction. The intensity of stiffness degradation is indicated by the number of active bricks nab

lining failure. Conversely, the predicted changes in pore water pressure do not align well with the

measurements. This inconsistency may be influenced by the selected pore water calculation type

in the used FE code [26]. However, these discrepancies may also result from data interpretation,

as well as the placement of the measurement devices along the tunnel length. The measurements

were recorded throughout the entire construction period of the tunnel, which in the case of plane

strain analysis may not always be correctly represented. In this context, it should be considered

whether a three-dimensional analysis would have provided more reliable results.
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7.2.2 HG-A microtunnel

The HG-A tunnel was constructed to investigate gas leakage and its potential release paths

[105]. The tunnel measured 13 m in length and had a diameter of 1.04 m. Excavation was

carried out using a micro-TBM auger in Opalinus Clay, where the bedding planes are inclined

at θ = 45◦ to the horizontal. The geometry of the model and the FE mesh are shown in Fig. 7.14

and are analogous to the analyses reported in [77, 98]. The dimensions of the square domain are

20.0 m × 20.0 m, with the tunnel centre located in the middle. Vertical displacement and pore

water pressure were monitored using piezometers (HG-A2, HG-A3) and inclinometers (HG-A5,

HG-A7).

Calculations

Similarly to the analysis of the FE tunnel, all calculation phases in HG-A tunnel simulation

are consolidation phases:

1. Initial phase, field stress conditions;

2. Tunnel drilling, ∆t = 7 days;

3. Consolidation phase, ∆t = 3 days.
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Fig. 7.14: Geometry and FE mesh of the HG-A microtunnel drilling problem (2380 15-node triangular elements, 19185

nodes). Red and blue dots represent the selected measurement devices (inclinometers and piezometers)
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4. Consolidation phase, ∆t = 90 days;

5. Consolidation phase, ∆t = 100 days.

The tunnel construction phase corresponds to the actual excavation period, while the subse-

quent three consolidation phases represent the time during which measurements were recorded

[105]. Tunnel drilling was simulated by deactivating the soil cluster and pore water within the

tunnel face. The micro-TBM was modelled by introducing plate elements with very high stiff-

ness: EA = 10.25 · 106 kN/m, EI = 2135 kNm2/m, ν = 0.0. In order to simulate its removal,

the lining was deactivated in the following 3-day consolidation phase. The tunnel lining was

not applied in the analysis.

Results

The presented measurement results were obtained from devices located in the test section of

the tunnel, which covered its final part (9-13 m). The comparison of measurements and calcu-

lations is shown in Fig. 7.15. Solid lines indicate field data and dashed lines define calculation

results. Vertical component of displacement is measured at points above and below the tunnel,

located at the same distance from the centre point of the tunnel, but the observed response

differ. The settlement increases very quickly during the excavation and then stabilises. The

obtained heave, however, continuously rises and the displacement does not stabilise during the

200 days of monitoring. These differences may be a result of construction, measurement errors

or inconsistencies in the Opalinus Clay deposit. In contrast, the displacement values obtained

from the calculations increase slightly during the excavation, but the actual drop is visible after

the micro-TBM removal. After that time, the displacements remain at the same level. The

obtained displacements are significantly overestimated.

Pore water pressure is measured above and next to the HG-A tunnel. The initial pore water

pressure at the tunnel location is σpp = −900 kPa. The pressure changes measured above

the tunnel are generally stable, but there is a significant peak at the beginning and then,

about halfway through the observation period, a sudden drop in pressure occurs. The pressure

calculated at this point drops rapidly at the beginning due to the tunnel drilling procedure and

then stabilises. The results obtained are comparable to the measurements after about 100 days.

The water pressure measured on the side of the tunnel rises rapidly due to the tunnel

construction and then dissipates to its initial state during consolidation. The calculations also

show a peak in pressure increase, but it is much smaller. During consolidation, the pressure

initially drops sharply and then stabilises. Ultimately, the pressure value obtained is too low

and becomes comparable at the end of the measurements.
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Fig. 7.15: The comparison between calculated and measured [43] settlement: a) uy, b) pore water pressure σpp obtained

from HG-A tunnel construction

Conclusions

The calculated results show significant discrepancies from the measurements both in terms of

the settlement profiles and changes in pore water pressure. The material parameters of Opalinus

Clay soil were assumed to be the same for the FE and HG-A tunnel analyses. However, since

much greater consistency was achieved for the FE tunnel, this suggests that the soil properties

may differ between the sites. Furthermore, these differences could be influenced by the strength

anisotropy of Opalinus Clay. As the AHEBrick model does not account for strength anisotropy,

it should be incorporated and the analyses repeated.
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7.3 Open-pit trial excavation in Oxford Clay at Elstow,

UK

The ground investigations, carried out in the 1980s, were aimed at finding a suitable location

for the storage of low-level nuclear waste. Various locations in the United Kingdom were con-

sidered, one of which was in Oxford Clay at Elstow, Hertfordshire. The investigation involved

constructing a full-scale excavation, the size of which would correspond to that of the nuclear

waste repository, and monitoring ground deformation.

The surface dimensions of the constructed excavation were 38 m × 104 m, with the depth of

10 m. This case was heavily instrumented with extesometers, inclinometers and piezometers,

which allowed to measure the obtained horizontal and vertical displacements and pore pressure

in the selected points. The field measurement instrumentation and its location is presented

in Figs. 7.16 and 7.17, illustrating the geometry of the problem for the plane strain and 3D

analyses. Only one half of the excavation is considered, however the displacement measurement

points were placed on both sides, symmetric to the excavation axis.

The full course of the experiment and the obtained results were reported in [132] and later

in [70]. In [132], the advanced laboratory tests were carried out on Oxford Clay, some of which

are presented in Fig. 6.12 in Sec. 6.1.4.

This case of the full scale open-pit trial excavation in Oxford Clay has been used in order

to validate the AHEBrick model, and the comparative results were published in [101].

Geometry and soil conditions

The numerical analysis includes plane strain and 3D simulations. The total dimensions of the

3D model (Fig. 7.17) are 50.0 m × 166.0 m × 20.0 m. All results are presented for the cross-

section y = 67.5 m, which dimensions correspond to the plane strain geometry (Fig. 7.16). The

groundwater table in located 1.0 m below the ground surface. The groundwater flow conditions

of the FE domain are closed at the excavation symmetry line and at the bottom. The side

boundaries are defined as a constant water head, located at y = −1.0 m in case of plane strain

model, and at z = −1.0 m for three dimensional analysis. Seepage is allowed at the top of the

model and along the excavation slopes.

The 11-m-thick Oxford Clay layer is overburdened by 1.0 m of clayey head deposits and

2.0 m of the Weathered Oxford Clay. Below the Oxford Clay sediment, 4.0 m of Kellaways

Sand and 2.0 m of Kellaways Clay are located. The top head deposits layer is described with

Mohr-Coulomb model (Eoed = 60000 kPa, ν = 0.3, φ = 30◦, c = 10 kPa, γ = 18 kN/m3, kv =

kh = 0.01 m/day, K0 = 1.0). The remaining soils exhibit very high stiffness, hence they are
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Fig. 7.16: Plane strain geometry and FE mesh of the back analysed case study of the trial excavation in Oxford Clay

(1605 15-node triangular elements, 13035 nodes). Black dots represent the location of the displacement measurement

points (extensometers and inclinometers)

simulated with the AHEBrick model. Material properties are generally adopted from [70, 132].

Since the excavation analysis mainly concerns Oxford Clay, some of the recent laboratory test

are taken into consideration [29, 72]. The Oxford Clay parameter calibration is presented in Fig.

7.18. The left-side graph illustrates the material response to the relation between deviatoric and

volumetric strain, obtained from triaxial radial tests in drained conditions [132]. The closest

fit to the experimental data is achieved for αG = 2.3 and β = 0.4. The right-side graph shows

undrained stress paths in p − q plane [72]. The values of strength parameters are adopted as

intermediate values between peak strength envelope and critical state line.
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ford Clay (125995 10-node tetrahedral elements, 181357 nodes). Black dots represent the location of the displacement

measurement points (extensometers and inclinometers)
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Material properties simulated with the AHEBrick model are presented in Tab. 7.3. Reported

in [70, 132] initial stress conditions are K0 = 1.0 for the head deposits and K0 = 5.0 for the

remaining soils. It is an unusually high value, so initial stress state is selected based on findings

in [29].

Table 7.3: Parameters of the soil deposits simulated with the AHEBrick model

Parameter Weathered

Oxford Clay

Oxford Clay Kellaways

Clay

Kellaways

Sand

Small strain stiffness

Gref
vh [kPa] 120000 120000 157300 157300

β [-] 0.4 0.4 0.5 0.5

αG [-] 2.3 2.3 1.7 1.7

pref [kPa] 100 100 100 100

Strain degradation
Gref

vhtmin [kPa] 7000 10000 10000 10000

||ε||sh [-] 0.0005 0.0005 0.001 0.001

Shear strength criterion

φ [◦] 28 28 30 30

c [kPa] 50 75 30 20

ψ [◦] 3 3 3 3

pte [kPa] 1 1 1 1

Flow kv = kh[m/day] 0.0518 · 10−3 0.0518 · 10−3 0.0518 · 10−3 3.46 · 10−3

Unit weight and initial stress
γ [kN/m3] 18.5 17.5 19.5 19.5

K0 [-] 1.8 1.8 1.5 1.5

Calculations

The excavation construction is conducted in 4 phases of soil removal and dewatering. In each

phase the selected soil cluster is deactivated and the water table is lowered by the introduction

of the new global water level, located along the current excavation slope on the left side of the

model. On the right side of the domain the water head is kept constant 1.0 m below the ground

surface.

The simulation is carried out as fully-coupled flow deformation analysis. The duration of

each excavation phase is consistent with the timeline reported for the real case. After the

construction two consolidation phases are carried out, the duration of which coincides with the

field measurements reading.

The numerical analysis consists of the following calculation phases:

1. Initial phase introduction of the state variables, K0 stress conditions, hydrostatic water

conditions;

2. Excavation of 3-m-thick layer, ∆t = 10 days;

3. Excavation of 2-m-thick layer, ∆t = 2 days;
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0

(a) (b)

Fig. 7.18: The parameter calibration of the laboratory test data: a) the εq − εV relation obtained from the drained

triaxial radial tests [132], b) undrained stress paths in p− q plane [72]

4. Excavation of 2.5-m-thick layer, ∆t = 5 days;

5. Excavation of 2.5-m-thick layer, ∆t = 26 days;

6. Consolidation phase, ∆t = 6 days;

7. Consolidation phase, ∆t = 78 days.

This procedure is the same for both plane strain and 3D simulations.

2D modelling

The results of the plane strain analysis are presented in Fig. 7.19. The figures show a part of the

model. The black and blue arrows represent soil displacement obtained from the measurement

points, located on the right and left sides of the excavation, respectively [70, 132]. Their values

are averaged from the different field instrumentation situated close to each other. The measured

deformation was obtained 6 days (two top pictures) and 84 days (two bottom pictures) after

the excavation was completed. It should be noted that, despite the assumed symmetry of the

structure, the reported field data differ on both sides of the excavation. This suggest that the

soil stratification is naturally diverse and the flow conditions may not be uniform.

The soil displacement obtained from the numerical simulation is shown in a form of red

vectors, in selected cross-sections. Qualitatively and quantitatively, the calculated results show a

better agreement with the deformation measured on the left side of the excavation (blue arrows).

The ground heave, achieved in the vicinity the excavation bottom, show great similarities to
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Fig. 7.19: Plane strain analysis; the comparison of the calculated soil deformation and displacement vectors obtained

from the measurement points, located on the left (blue arrows) and right (black arrows) sides of the excavation [70, 132]

the field data. Conversely, for the cross-section located near the excavation slope (x = 13 m),

the appropriate soil uplift was not possible to obtain after 6 days. After 84 days, however, it

is noticeable, and the inclination of the displacement vectors is nearly identical. The largest

discrepancies between calculations and measurements are visible for points located furthest

from the excavated area. Here, the calculated displacements are underestimated by almost

three times, especially near the ground surface.

3D modelling

The displacement vectors, obtained from the 3D analysis, are shown in Fig. 7.20, for the se-

lected cross-section y = 67.5 m. For this case, the calculations also show better agreement with

the measurements points located on the left side of the excavation. The overall soil deformation

in the excavation vicinity show greater similarities to the field data than in the case of the

plane strain calculations. However, at the excavation bottom, the results are slightly overesti-

mated. Additionally, the settlement, calculated at the points located further from the axis, is

significantly too small, much smaller than for the 2D analysis.
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Fig. 7.20: Three dimensional analysis; the comparison of the calculated soil deformation and displacement vectors

obtained from the measurement points, located on the left (blue arrows) and right (black arrows) sides of the excavation

[70, 132]

In theory, the calculations obtained from plane strain and three dimensional analyses should

show a high degree of similarity. It is not applicable in this case because the 3D geometry is not

a perfect representation of an extruded 2D FE domain. Additionally, due to the applied fully-

coupled flow deformation analysis, differences in soil response are generated by the advanced

groundwater flow.

The influence of flow boundary conditions on soil deformation

In order to improve the results, additional numerical analyses has been performed, assuming

that water flow is impossible at the sides of the FE domain. The obtained soil response in

presented is Fig. 7.21 for the plane strain calculations and in Fig. 7.22 considering 3D modelling.

In the both cases, soil heave at the excavation bottom decreased as compared to the previous

numerical simulations, which in the case of 3D analysis leads to a perfect match between

the calculated displacements and the field measurements. Additionally, the settlement at the

points furthest from the excavation increased in comparison to the examples assuming open
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Fig. 7.21: Plane strain analysis; soil deformation obtained from the analysis assuming closed ground water conditions

at the sides of the FE domain

flow conditions at side boundaries. Nevertheless, despite the improvement, the displacement

values obtained in these points are still too small.

Due to the very low values of isotropic permeability coefficients of clays kv = kh, most of the

water flow occurs in the Kellaways Sand layer. The overall flow intensity is significantly higher

considering open boundary conditions. Here, the pore water pressure increases and, in points

further from the model axis, the resulting settlement values are lower. In addition, along with

the higher groundwater flow rate more water is displaced towards the excavation bottom. By

closing off the possibility of water flowing in from the sides, less water moves to the excavated

area and ground heave, due to soil unloading, is not as much pronounced.

Conclusions

The results of the analyses show acceptable agreement to the measurements, especially in

the vicinity of the excavation bottom. In this area, the predicted displacement profiles show

adequate accuracy both in the magnitudes and directions. Any inevitable differences between

the calculations and measurements may be attributed to the performance of the AHEBrick
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Fig. 7.22: Three dimensional analysis; soil deformation obtained from the analysis assuming closed ground water

conditions at the sides of the FE domain

model but also to the limitations of geological surveys, permeability, and groundwater boundary

conditions used in the coupled deformation-flow analysis.
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Conclusions

Stiff overconsolidated soils exhibit anisotropic mechanical properties due to the geological

processes that influence soil microstructure. However, the research on stiffness and strength

anisotropy is relatively recent, mainly because laboratory testing in this area is complex and

requires advanced equipment capable of measuring soil properties in multiple directions.

Although the influence of anisotropy on soil behaviour has been well established, material

models available in commercial FE codes are, in most cases, isotropic. This is largely because

implementing a robust and consistent framework for anisotropic soil constitutive models con-

tinues to be a significant challenge.

This gap is addressed by the AHEBrick model, presented in this work. Its structure is simple,

following the framework of standard elasto-plastic models. The pre-failure barotropic stiffness

is described through an anisotropic hyperelastic stress-strain relation. And nonlinear stiffness

degradation is controlled by Brick-type procedure. The conventional isotropic Matsuoka-Nakai

shear strength criterion limits admissible stress states. More importantly, the number of required

material parameters is not excessive, and the model parameters can be determined using existing

experimental testing methods.

The AHEBrick model was verified and validated through element test simulations, analysis

of the geotechnical BVPs and through back analysis of real geotechnical cases reported in lit-

erature. The simulation of laboratory element tests included triaxial compression under both

drained and undrained conditions (CID, CIU), drained radial paths, and analyses of how stress

history under drained conditions affects material behaviour. In addition, the model was vali-

dated through a non-standard parameter calibration, where soil parameters were determined

by comparing the simulated soil response with selected experimental data.

Based on these element tests, a parametric study of selected model parameters was carried

out (αG, β, ||ε||sh, K0). The influence of inherent cross-anisotropy coefficient αG on stress paths

under undrained conditions, and consequently on soil strength, was demonstrated. As the value
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of αG increases, undrained shear strength gets lower. Furthermore, αG has a very strong influ-

ence on stiffness changes under drained conditions. Calibration of the model parameters using

laboratory data for selected stiff soils yielded satisfactory results, confirming that the values of

the obtained parameters are both consistent and plausible.

The investigations on geotechnical BVPs were carried out for tunnel drilling, open-pit exca-

vation and supported excavation cases. The aim of this research was to examine the impact of

anisotropy on the soil-structure response. For this reason, in every case, the homogeneous soil

layout, simple geometry and basic flow conditions were considered. Three values of the inherent

cross-anisotropy coefficient αG = 0.7, 1.0, 2.0 and three initial stress states K0 = 0.5, 1.0, 2.0

were studied.

Two tunnel drilling examples were analysed: deep tunnel and shallow tunnel. In both cases,

the value of the inherent cross-anisotropy coefficient αG highly influences soil response. Along

with the increasing αG value, the obtained settlement troughs get progressively deeper and

steeper. Moreover, stiffness anisotropy influences changes in the tunnel lining. Depending on the

assumed values of αG and K0, the shape and magnitude of deformation and bending moments

are different.

For the open-pit excavation case, the influence of αG and K0 on soil behaviour is found to be

generally negligible. Only very small differences were observed between the responses of isotropic

and anisotropic soils, with the largest deformations occurring at αG = 1.0. Similarly, the largest

displacements were obtained when the initial stress state was set to K0 = 2.0. However, from

an engineering perspective, these differences are minor and not worth considering.

For the deep supported excavation case, displacements were again larger for isotropic mate-

rial. However, unlike in the open-pit case, the differences between isotropic and anisotropic soil

responses are much more pronounced and cannot be overlooked. Interestingly, when αG 6= 1.0,

the soil response is practically identical regardless of whether the horizontal stiffness is greater

or smaller than the vertical stiffness. In contrast, when isotropic material is subjected to higher

initial horizontal stresses (K0 = 2.0), the resulting settlement troughs and horizontal displace-

ment components are significantly greater than in other cases.

A similar pattern is observed in the displacement and bending moments of the diaphragm

wall. Overall, the influence of inherent cross-anisotropy αG becomes significant only when the

soil is subjected to anisotropic initial stress conditions.

In all cases, the influence of αG and K0 on stiffness degradation is evident, particularly in

the tunnelling and supported excavation examples. Therefore, it can be concluded that the

evolution of stiffness is critical in determining the depth and shape of the resulting settlement

profiles.
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The role of stress-induced anisotropy was also examined by comparing the isotropic case

(αG = 1.0, K0 = 1.0) calculated with the AHEBrick model to that obtained with the isotropic

hypoelastic model. The results indicate that for tunnelling and open-pit excavation the effects

of stress-induced anisotropy are negligible. In contrast, for supported excavation, stress-induced

anisotropy shows a significant influence and seems to be the major factor generating material

deformation.

The back analysis was conducted for the real cases of twin tunnel construction in London

Clay, FE and HG-A tunnels in Opalinus Clay and trial open-pit excavation in Oxford Clay. In

order to obtain comparable response the model geometry and construction procedure are closely

based on the data reported in literature. By analysing the results obtained from simulations of

real geotechnical cases, the following conclusions can be drawn:

• The implemented stiffness anisotropy provides a good representation of soil behaviour, par-

ticularly under undrained conditions. From the engineering perspective, the agreement be-

tween model response and field measurements is especially valuable for short-term deforma-

tions, as the most critical differential displacement occurs during this stage.

• Considering long-term soil response, the results obtained from the calculations are signifi-

cantly underestimated. Similarly, large discrepancies between model performance and field

data are evident in case of Opalinus Clay, as it exhibits characteristics of rock matrix. These

results suggest that stiffness anisotropy alone is insufficient for capturing settlements induced

by consolidation. Additionally, the AHEBrick model is incapable of the proper simulation

of rock materials. In such cases, strength anisotropy should also be incorporated to properly

reflect soil response.

• In most of the geotechnical problems in preconsolidated fine-grained soils, analysed in this

study, the idea of introducing anisotropy only into the elastic part of the material model

provides, from an engineering perspective, sufficient accuracy of numerical simulations for

predicting deformations. This, therefore, confirms the thesis of the study.

• Finally, to obtain results consistent with experimental evidence, material parameters must

be selected with great care, and the applied flow conditions must be thoroughly considered,

as both exert a major influence on the magnitude of the simulated soil response.
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Appendix

A.1 Hyperelastic potential

In this section, the detailed description of all operations conducted in order to calculate tangent

compliance matrix from the hyperelastic potential (Eq. 5.9) are provided.

The hyperelastic potential used in the AHEBrick model is based on the isotropic model

proposed by Vermeer [163]:

W (σ) =
3p1−β

ref

2Gref
0 (1 + β)

[
2

3
Q(σ)

] 1+β

2

, (A.1)

defined as a function of a stress invariant Q(σ):

Q(σ) =
1

2
tr σ

2 =
1

2
σabσab. (A.2)

In order to incorporate inherent anisotropy into the formulation, the introduction of the joint

invariant of stress and microstructure is needed [23, 24]:

QM(σ,M) =
1

2
tr (σ2 · M) =

1

2
Mabσbcσca. (A.3)

Following findings in [23, 24], the mixed invariant of stress and microstructure is obtained:

Q(σ,M) = c1Q+ c2QM =
1

2
(c1σabσab + c2Mabσbcσca) =

=
1

2
(c1δacσbcδbcσca + c2Mabσbcσca) =

=
1

2
(

mab
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c1δab + c2Mab)σbcσca =
1

2
mabσbcσca. (A.4)

Parameters c1 and c2 are the material constants in the AHEBrick model. The isotropic potential

from Eq. A.1 can be then modified to account for inherent and stress-induced anisotropy by

replacing stress invariant Q(σ) with mixed invariant Q(σ,M):
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W (σ,M) =
3p1−β

ref

2Gref
0 (1 + β)

(
2

3
Q(σ,M)

) 1+β

2

. (A.5)

In order to obtain tangent compliance tensor the second derivative of the modified potential

function needs to be calculated.

A.1.1 First derivative

The secant stress-strain relation is obtained by the differentiation of the stress-based potential

in Eq. A.5:

εe
ij =

∂W (σ,M)

∂σij

=
3p1−β

ref

2Gref
0 (1 + β)

∂

[
(

2
3
Q
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2
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, (A.6)

where partial derivative
∂

[
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Q)
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]

∂σij
is calculated as follows:
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The final expression of
∂

[

( 2

3
Q)

1+β
2

]

∂σij
is obtained using the provided relation:

∂σij

∂σkl

=
1

2
(δikδjl + δilδjk) = Iijkl. (A.8)

In the end, the secant stress-strain relation takes the following form:
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εe
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A.1.2 Second derivative

Tangent compliance tensor Ct
ijkl is obtained by the differentiation of the formulation shown in

Eq. A.9.

Ct
ijkl =
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Partial derivatives, denoted as I and II, are calculated in a following way:
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Finally, the second stress derivative of the anisotropic hyperelastic potential W (σ,M) gives

the following tangent compliance tensor Ct:

Ct
ijkl =

1

4G0
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