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Abstract

Stiff fine-grained soils are usually anisotropic, meaning their properties vary with direction.
While anisotropy effects on soil response are known to be important in geotechnics, the related
research is still limited due to complex testing and modelling.

Advances in numerical modelling now allow analysis of soil-structure interaction in boundary
value problems (BVPs). A key step is selecting a constitutive model that captures soil behaviour,
yet most models available in commercial codes are isotropic.

To address this, the anisotropic AHFEBrick constitutive model was developed. Since strains
near well-designed structures are generally small, stiffness anisotropy is implemented in the
small-strain range. This is particularly relevant for geotechnical problems related to major
unloading, where stress redistribution is significant, making anisotropy in the pre-failure range
essential.

This work investigates stiff anisotropic clays with experimental support, focusing on con-
stitutive approaches for simulating anisotropy. The AHEBrick model is described, including
refinements to its first version. Validation with element tests, geotechnical BVPs, and real case

back-analyses highlights the role of stiffness anisotropy and its impact on soil behaviour.



Streszczenie

Sztywne grunty drobnoziarniste sg zazwyczaj anizotropowe, czyli ich wlasciwoséci zmieniaja sie
w zaleznosci od kierunku. Cho¢ anizotropia silnie wptywa na zachowanie gruntu, badania sa
ograniczone z powodu ztozonosci testow laboratoryjnych i modelowania.

Postep w modelowaniu numerycznym pozwala dzi$ analizowaé interakcje grunt—konstrukcja
w zagadnieniach brzegowych (BVP). Kluczowe jest zastosowanie modelu konstytutywnego
wiernie odwzorowujacego zachowanie gruntu, jednak wiekszos¢ modeli w programach komer-
cyjnych zaktada izotropie.

Aby przezwyciezy¢ te ograniczenia, opracowano anizotropowy model AHEBrick. Poniewaz
odksztatcenia przy dobrze zaprojektowanych konstrukcjach sa zwykle mate, anizotropie sz-
tywnosci wprowadzono w zakresie matych odksztatcen. Jest to istotne zwtlaszcza przy proce-
sach odcigzenia, gdzie nastepuje redystrybucja naprezen, a uwzglednienie anizotropii w zakresie
przedzniszczeniowym jest kluczowe.

W pracy analizowane sg sztywne gliny anizotropowe z wykorzystaniem danych eksperymen-
talnych i podejsé¢ konstytutywnych. Opisano model AHFEBrick oraz jego ulepszenia. Walidacja
poprzez testy elementowe, zagadnienia brzegowe i analizy rzeczywistych przypadkow potwierdza

znaczenie anizotropii sztywnosci i jej wptyw na zachowanie gruntu.
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Introduction

1.1 Motivation

Due to the geological processes that influence soil microstructure, stiff fine-grained soils are
typically anisotropic, which means their properties vary with a direction. This directional
dependence may be observed as stiffness anisotropy, strength anisotropy or permeability
anisotropy. The influence of anisotropy on soil response has been confirmed in several stud-
ies, e.g. [3, 22, 76, 98, 102, 123, 138, 147, 179, 180]. Nevertheless, research on anisotropic soils is
relatively recent compared to isotropic soils, mainly because laboratory testing is far more com-
plex. Such tests require advanced equipment capable of measuring soil properties in different
directions.

With the development of numerical modelling, it has become possible to analyse soil-
structure interaction in boundary value problems (BVP) of the geotechnical cases. A crucial
aspect of this process is selecting a material model that reliably reproduces soil behaviour.
However, most of the material models, available in commercial software, are isotropic. The
closest option for representing stiffness and strength anisotropy is the Jointed-Rock Model,
which allows to assign separate strength parameters to discontinuities within the linear elas-
tic cross-anisotropic rock matrix. Furthermore, commercially available material models that
incorporate anisotropy into formulation are generally limited or complex, as they require a
large number of material parameters. However, the alternative anisotropic material models are
available in [153].

1.2 Aim

The initial version of the AHFEBrick constitutive model, presented in this work, was first for-

mulated at Gdansk University of Technology and described in [44]. This model introduces
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stiffness anisotropy within the small-strain range by implementing a hyperelastic kernel that
incorporates joint stress and microstructure invariant into the formulation. The resulting stiff-
ness anisotropy is then extended into the intermediate strain range. Stress history is accurately
reproduced with the use of the Brick procedure, proposed by Simpson [149], which is charac-
terised by the nonlinear stepwise stiffness degradation. In contrast, shear strength is modeled
using the isotropic Matsuoka-Nakai criterion [106]. The advantage of this model is that the
initial parameters can be obtained from laboratory tests.

Although both stiffness anisotropy and strength anisotropy occur in stiff soils, the A HEBrick
model introduces only stiffness anisotropy in the small-strain range, since strains around well-
constructed structures are generally small [34]. Accurate characterization of soil stiffness in
this range is therefore essential. Moreover, stiffness anisotropy influences the stress path under
undrained conditions, thus also affecting the undrained shear strength of the soil [150]. Due to
the fact that the most critical displacement occurs during short-term and undrained conditions,
the AHEBrick model seems to be suitable for capturing the behaviour of stiff anisotropic
soils. Additionally, in this work, soil-structure interaction problems related to soil removal,
such as tunnel drilling, deep supported excavations and open-pit excavations are analysed.
These processes cause significant unloading, which in turn leads to major stress redistribution.
Therefore, for such cases, modeling anisotropy in the pre-failure range is essential.

The aim of this work is to improve and validate the AHEBrick model and to investigate
whether the model, which accounts for barotropy, stiffness anisotropy and nonlinear stiffness
degradation within the pre-failure regime, is able to produce satisfactory results, regardless the

applied isotropic shear strength criterion.

1.3 Scope

This work examines the properties of stiff anisotropic fine-grained clays, supported by exper-
imental evidence. The primary focus, however, is on constitutive models and approaches for
simulating anisotropy. Considering the characteristics of the AHEBrick model, the discussion
of anisotropy and its numerical simulation is centered on stiffness anisotropy, which is defined
within the small-strain range.

The AHEBrick model is described in detail and the refinements added to the initial version
are presented. The in-depth parametric analysis is carried out to demonstrate the influence
of the material constants on soil response. The model is then validated using element tests,

geotechnical BVPs, and back-analyses of real cases. Particular attention is dedicated to ex-



1.3 Scope 3

amining the effects of stiffness anisotropy on the selected geotechnical problems. This analysis
makes it possible to assess the actual impact of the magnitude of anisotropy on soil behaviour.

This work is arranged in a following way:

Chapter 2: Nonlinear pre-failure stiffness of soils

The magnitude of soil stiffness is highly dependent on the stress level (barotropy) and degrades
nonlinearly with strain. This chapter presents experimental evidence of both barotropy and
stiffness degradation, followed by a discussion of modeling approaches for pre-failure soil be-
havior. Barotropy can be incorporated into an elasto-plastic framework by introducing stress
dependency into the elastic stiffness. Barotopic models can either be hypoelastic or hyperelasic.
Examples of these formulations are presented, with particular emphasis put on the hyperelastic
model proposed by Vermeer [163], as it plays later a key role in the AHEBrick model. The
behaviour of soil within small intermediate and large strain ranges is then described. Nonlin-
ear stiffness can be represented using hysteretic models, however, these often struggle to track
stress-strain history of a material, especially concerning stiffness recovery following sharp stress
path reversals. To overcome this limitation, models that properly capture stiffness changes dur-
ing small stress reversals employ the concept of nested yield surfaces. This concept is explained.
Finally, a multi-surface Brick-type model, formulated in strain space and proposed by Simpson
[149], is presented. A modified version of the Brick procedure is later used in the AHEBrick

model.

Chapter 3: Anisotropy of soils

In this chapter, the description and origin of anisotropic properties of soils are presented.
Two types of anisotropy are distinguished: inherent anisotropy, which is fully dependent on
soil microstructure and stress-induced anisotropy, which is influenced by the magnitude and
rotation of principal stress components. In general, anisotropic soils exhibit cross-anisotropy,
meaning their properties are symmetric about the axis normal to the bedding plane (the plane of
isotropy). Subsequently, experimental evidence of mechanical anisotropy is presented: stiffness
anisotropy in the small-strain range and strength anisotropy at large strains. Methods for
testing anisotropic parameters are discussed. Then the examples of soils that exhibit anisotropic

behaviour are provided.

Chapter 4: Constitutive modelling of anisotropy

This chapter presents approaches to modelling anisotropic mechanical properties. Linear elas-

tic models which incorporate anisotropic stiffness are discussed, including their parameters and
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the limitations associated with proper model definition. Subsequently, the method for intro-
ducing anisotropy into nonlinear models is presented. It is done by the incorporation of joint
invariants of stress and microstructure into the formulation [23, 24]. This approach, used to
define anisotropic failure criteria, is described for the model proposed by Pietruszczak and Mréz
[133, 134]. A quite interesting method of introducing inherent cross-anisotropy into arbitrary
isotropic models is proposed by Niemunis and Staszewska [121] is then described. In this ap-
proach, cross-anisotropic characteristics of soil microstructure are superimposed on isotropic

elastic stiffness tensor or shear strength criterion by a special scaling method.

Chapter 5: Anisotropic hyperelastic-plastic model for stiff soils

In this chapter the AHEBrick model is defined. The model description is organised into three
parts: the small-strain range, the intermediate strain range, and the yield surface in a form
of shear strength envelope. The first section presents the formulation of the anisotropic hy-
perelastic kernel. All initial stiffness parameters of the A HEBrick model are described, along
with their functions and limitations. Methods for determining these parameters from labora-
tory test data are also presented. The marginal influence of parameter ¢; on anisotropy changes
has been demonstrated, and its value has therefore been established as a constant (¢; = 1.0).
Consequently, parameter ¢y can be directly correlated with the cross-anisotropy coefficient ag.
This reduces the number of required material parameters and simplifies their determination
from laboratory tests. Within the intermediate strain range, the nonlinear degradation of stiff-
ness is presented, for which the previously described Brick procedure was used. The selection of
an appropriate strain measure is then discussed. Subsequently, the isotropic Matsuoka-Nakai
shear strength criterion is introduced. Finally, the procedure for implementing the model into

a commercial FE code [26] is described.

Chapter 6: Verification of the A HEBrick model in element tests and exemplary
BV problems

In this chapter, the AHEBrick model is verified. First, the simulations of laboratory tests
on a single element is presented. The influence of selected model parameters on soil response
is examined. Based on laboratory data, model parameters are then calibrated so the imple-
mented material model reproduces the observed mechanical behaviour of tested soils as closely
as possible. The model response is further validated through FE simulations of geotechnical
boundary value problems. The aim of BVPs is to investigate material parameter influence on

the soil-structure interaction, hence the homogeneous soil layout and basic flow conditions are
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considered. The investigations are carried out for tunnel drilling, open excavation and supported
excavation cases, where anisotropic properties in the small and intermediate strain ranges play

a critical role, as the soil undergoes significant unloading.

Chapter 7: Application of the A HEBrick model in case studies

In this chapter the AHEBrick model is validated against real geotechnical cases. The purpose
of such analysis is to verify the extent to which the adopted material model is able to reflect
reality. For this reason, the model geometry and construction procedure are closely based on
the data reported in literature. The results are then compared to corresponding field measure-
ments of well documented case studies. The following analyses concern the cases of twin tunnel
construction in London Clay [32, 33|, FE and HG-A tunnels in Opalinus Clay [102, 115] and
trial open-pit excavation in Oxford Clay [70, 132].

Chapter 8: Conslusions

The main conclusions of this work are presented.
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Nonlinear pre-failure stiffness of soils

Up to 1970s, the discrepancy between the in situ stiffness and stiffness tested in laboratory
conditions, was thought to be caused by a sample disturbance. As finite element method had
become popular in the numerical simulations of geotechnical boundary value problems, it was
possible to verify the stiffness parameters obtained from the laboratory tests by the back anal-
yses of real cases and its comparison to the field measurements. When field deformation mea-
surements were juxtaposed with calculation results based on stiffness parameters obtained from
the standard laboratory tests, it was quickly discovered that the real soil stiffness is frequently
underestimated [34, 42, 154, 172]. It was then established that soil stiffness is highly dependent
on the stress level and strain history a material is subjected to [10, 149, 154].

These dependencies are presented in Fig. 2.1 for the example of Hachirougata Clay [145]. The
results of the cyclic torsion shear (CTS) tests are presented through the relationship between
the secant shear modulus Geq, defined as the slope of the line connecting two peaks of the
hysteresis loop, and single amplitude shear strain yss. Eight undisturbed soil samples were
tested under various values of the isotropic consolidation pressure py. The results clearly show
the influence of stress level on soil stiffness. The value of stiffness modulus increases along with
the increasing effective stress level. This dependence of soil stiffness on stress level is called
barotropy. Typically, the stiffness modulus is expressed as a function of the mean stress p or of
one of the principal stress components o;.

On the other hand, stiffness of a material decreases nonlinearly during straining. As shown
in Fig.2.1b, the relationship between shear modulus G and strain ysa can be represented
on a logarithmic scale by a characteristic S-shaped curve. Based on a soil behaviour, three
strain ranges can be distinguished: small, intermediate, and large. In the literature, the terms
very small, small, and large strains are also used interchangeably, eg. [20, 41, 129]. Within the

small-strain range, the value of stiffness can be considered constant. For Hachirougata Clay,
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Fig. 2.1: Relation between shear modulus G.q and single amplitude shear strain sa, obtained from CTS test on
undisturbed Hachirougata Clay samples: a) the variation of shear moduli Geq under different isotropic consolidation

pressure, b) shear moduli Geq normalised by Gmax, after [145]

this phenomenon is observed up to y5a = 10~%. Beyond this point, in the intermediate and
large strain ranges, nonlinear degradation of stiffness occurs.

Within the framework of elasto-plasticity, barotropy is mainly taken into consideration in
the elastic region, in order to properly determine the value of the initial stiffness modulus. This
value is subjected to the stiffness-strain degradation within the intermediate strain range. The
description of the influence of stress level and stain history on the current soil stiffness and the

modelling approaches of the pre-failure soil behaviour are presented in this chapter.

2.1 Barotropy

Constitutive modelling at small elastic strains is expressed by the following relation between

stress and strain:
oc=D%:¢° o&6=D":¢" (2.1)

in the form of secant relationship between stress and elastic strain or tangent relationship
between stress rate and elastic strain rate. The forth order tensors D® and D" refer to secant
and tangent stiffness, respectively. They are related to the forth order secant and tangent
compliance tensors C°, C' in a following way: C* = (D*)~! and C' = (D")~L.

The simplest small-strain model is based on the Hooke’s linear isotropic elasticity:
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E 1— 2y
Dt 0 Y000k + 70(52'/&5]'1 + 6jk5il) ) (2.2)

UKL+ 1) (1 — 20p)

where F is the Young’s modulus and v is the Poisson’s ratio. Subscript ()o refers to the ini-
tial (small strain) values. In this formulation, the secant and tangent relations have the same
constant stiffness.

However, in reality, the magnitude of initial elastic stiffness moduli is highly influenced by
the current stress state. Therefore, the dependency of the stress level on the initial soil stiffness

needs to implemented within the small strain range.

2.1.1 Hypoelasticity

The application of the empirical correlations to Hooke’s law isotropic elasticity is the simplest
way to create a nonlinear elastic model with barotropic stiffness, for which Young’s modulus

E(o) is stress dependent and Poisson’s ratio v is constant:

Lo 1—2v
(1 —+ y>((1>_ 2]/) Véij(skl + T((Slkéﬂ -+ 5jk6il) . (23>

It should be noted that, in the context of hypoelasticity, it is often difficult to determine whether

th'jkl(o') =

the parameters refer to tangent or secant stiffness. For this reason, the parameters are presented
without the subscript ()o.

Commonly used barotropic relation is based on power law:

E(o) = B <p>m, (2.4)

Pret

where m is power law exponent that defines the order of the stress-stiffness relation. Another

popular empirical equation was proposed by Ohde [127] and Janbu [80]:

wof [ —03ta "
Eoed(o-) = wEoefd <pf3‘i‘CL> ) (25>

where the tangent oedometric modulus E™!| is measured at the reference pressure p.; and w,
a = ccot ¢, n are the material constants.

While empirical relations work well concerning a fit to the experimental data, their incor-
poration into Hooke’s elastic stiffness may result in a non-conservative behaviour, meaning it
allows for the accumulation of stress or strain and the generation of energy for some closed strain
or stress cycles, respectively [119, 121]. In this regard such models can be called hypoelastic.

To evaluate whether the model is conservative, the stress response to a circular strain loop in

the principal strain space can be investigated. Such closed strain loop naturally occurs during
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Fig. 2.2: Stress paths obtained for a five-cycle closed circular strain loop in v/2e§ — €$ plane. In the case of hypoelastic

formulation stress accumulation occurs, after [44]

the propagation of a Rayleigh wave. Presented in Fig. 2.2 stress paths are obtained over five
cycles of the circular strain path. The analysis is carried out for Hooke’s linear elasticity and
a hypoelastic stiffness defined with the power law expression in Eq. 2.4. The parameters are
chosen so that both models produce the same response envelope at the initial stress state o°.
If the stress response forms a closed loop in stress space, the model is considered conservative.
In contrast, the hypoelastic model produces open loops, where the stress values progressively
increase with each cycle.

Based on the preceding analysis, it can be concluded that the application of hypoelastic
models to geotechnical problems involving dynamic or cyclic loading may lead to significant
computational errors [75, 121]. Nevertheless, if stress or strain does not form a closed loop, the
stresses and strains revert to their original values, even when a non-conservative model is used
[119].

2.1.2 Hyperelasticity

A conservative elastic material should not assume stress and energy accumulation in closed
strain loops [47, 121]:

j{ngkzdgzz =0, ]{ Hwdow = ]{Uijd€§j =0, (2.6)

where D' and C" are fourth order tangent stiffness and compliance tensors. This type of relation
is called hyperelastic. The most straightforward way of formulating a truly hyperelastic material
model is to use the elastic potential function W [44, 73, 119]. This elastic potential can be
denoted either as negative Gibbs free energy W (o) - a scalar function of stress or Helmholtz

free energy W (e®) - a scalar function of elastic strain. Secant compliance and stiffness tensors
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(C®, D®) can be obtained by the differentiation of stress based and elastic strain based potential

functions respectively:

oW (o)

e -2\ (s 2.7

€ij aaij ikl Okl ( )
8 (ee) S €

Oij = FE Dijklgkl' (2.8)

ij
Whereas tangent compliance and stiffness tensors (C*, D') are obtained as second derivatives

of the potential functions:

P2W ()

t

K = B don’ (2.9)
2 e

pr,, = IWE) (2.10)

ikt = 0es;0ef;

It is impossible to directly measure an elastic potential function by any experiments. How-
ever, one can formulate it on the basis of trial analysis and inspection, for example, by comparing
the response from the model with some test results. An overview of some hyperelastic potentials
is provided in [119, 174].

The strain-based elastic potential was proposed by Houlsby et al. [74]:

2—n
2—-2n

e\ Pref 22:—2’; 29 2/ e e2
W(e") = g5y K =) { [ka ) — 3] tr2(e°) + 2gtr (esymm)} (21
where n, k g are dimensionless parameters. Another example was presented by Xiao et al. [173]:
W(e®) = A(e5)™) [(65)" +£(e9)7], (2.12)

where A, ¢ are elastic constants, €}, is volumetric elastic strain and & = \/% is the sec-
ond invariant of elastic strain tensor £f;. In both cases, the provided models account for the
anisotropic material.

On the other hand, the formulation, proposed by Boyce [25], assumes secant stiffness moduli

G®, K® to be functions of stress invariants p, ¢:

1-n1 I=n 2
P p kl q
GB = of | — d K? s =k re 1—(1- » ’
(P, @) = g1p f< ) and K*(p, q) = kp f<pmf> [ ( n1)6g1 (p) ]

ref

where g1, k1, nq are dimensionless parameters.
Usually, the commercial FE codes, eg. [26], are displacement-based, hence in this case tan-
gent stiffness tensor is required. For elastic potentials, defined with the function of strain, D" is

obtained directly as second derivative. However, if the provided formulation is stress-dependent,
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tangent stiffness may be acquired either numerically or analytically by inverting tangent com-
pliance tensor C' = (D")~!. Another approach concerns attaining elastic potential function of
strain W (&), that corresponds to the stress based potential, by the Legendre transform applied
on a scalar function of stress W (o) [74].

The following formulation is very important in the context of this work, which is why it
is described here in more detail. The potential presented by Vermeer [163] takes the following

form:

3pi2? 2 1 1
W(O’) pref { 2 2

— G (11 7) BQ(U)} ,  where Qo) = §tr0' = 50ab0ab. (2.14)

This function is based on the parameters that can be easily tested in laboratory conditions
and are used in engineering practises, where G% is the small-strain tangent shear modulus

measured at the reference isotropic stress p = prer, and [ is a material constant dependent on

1-p
and vg=-——.
]_—I—l/() 2—’—5

Tangent compliance is obtained due to differentiation of the function W (o) (see Eq. 2.9):

Poisson’s ratio:
B=—2+

(2.15)

1 1 0;i0,
itjkl = TGO [ (5ik(5ﬂ + 5i15jk> — (1 — B)]kl:| )

2 Oab0ab

(2.16)

Whereas the stiffness matrix can be a result of analytical inversion of the compliance matrix:

W—UW]

5 ouou (2.17)

1
where Gy is shear modulus dependent on stress:

1-8
Viowo,
Go = G (3“’> . (2.18)

Dref

The influence of stress on the stiffness obtained from Vermeer’s hyperelastic potential can
be studied in a graphical form of the so-called response envelope [61]. It is a useful tool to
study the differences of parameter influence, especially for small strain stiffness formulations.
It is described as a polar representation of the tangent compliance or stiffness tensor. It is
illustrated in Fig. 2.3 as a closed curve response of material stiffness or compliance to a radial
stain or stress probes in the selected stress or strain planes (v/203 — 01, v/2e§ — £$), respectively.
It is possible to obtain response envelopes in a laboratory environment, e.g. [64, 90], however
the testing is still extremely complex.
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Fig. 2.3: A schematic representation of a response envelope in the triaxial plane (o2 = 03) to a strain probe. The strain
increment controls the size of the ellipses and can be used as a scale. The white and dark grey dots show purely deviatoric

and volumetric strain increments, respectively, after [47]

In Fig. 2.4 the response envelopes of the Vermeer’s nonlinear hyperelastic stiffness are shown.
Three axisymmetric stress ratios (K = o3/01 = 0.5,1.0,2.0) are considered. If stress state is
deviatoric (K # 1.0), the obtained envelopes are rotated with a respect to the hydrostatic axis
K = 1.0. Moreover, if the reference pressure p..s increases, the ellipses get larger accordingly.
This model is compared to the Hooke’s isotropic linear elasticity. The value of the Hooke’s law

stiffness Er°f is selected in a way that it correlates to the hyperelastic model parameter G%f,

—o —e— Vermeer's hyperelastic model s /
——e—— Hooke's linear isotropic model
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Fig. 2.4: Comparision of the response envelopes for Vermeer’s nonlinear hyperelastic and Hooke’s linear elastic models.

The values of Hooke’s stiffness parameters E5f = 120000 kPa, 1o = 0.2 correspond to the parameters used in Vermeer’s

model: G5! = 50000 kPa, 8 = 0.5
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following the relation:
Bt = 2GH(1 + 1), (2.19)

where tangent moduli Egef and G{)ef are measured at the reference pressure p.f and the value

of vy, which corresponds to [ parameter, is obtained form the expression in Eq. 2.15. Since the
Hooke’s stiffness is not depended on stress, the size and the position of the envelopes remain

the same regardless the stress state.

2.2 Stiffness-strain degradation

A material response to loading can be described by taking into account the kinematic nature
of soil stiffness presented by Jardine [82]. As presented in Fig. 2.5, the distinct zones of soil be-
haviour can be identified corresponding to different soil stiffness ranges. Each zone is restricted
by a kinematic surface Y;. Those surfaces are controlled by strain thresholds. The extensive
overview of reported strain thresholds for different soils is featured in [49]. Strain ranges coin-
cide with kinematic zones as follows: small-strain range - zone 1 and zone 2, intermediate strain
range - zone 3, large strains - zone 4.

It has been proven in [34], based on numerous practical cases of geotechnical problems
(14, 17, 35, 91], that the soil straining around well constructed objects rarely exceed the value

of 0.1%. Hence, the proper determination of soil stiffness within the small-strain range is crucial.

qh GA

zone 4 |

zone 3 Y
zone 1 Y
<
zone 2 Y, zone 1 zone 2 zone 3
Yy Yy
T T T T T
p 10° 10+ 107 10?2 0t 7

|<---—-+———> retaining walls
j<---+——>| foundations
N +——> tunnels

Fig. 2.5: Kinematic behaviour of soil stiffness presented by Jardine [82] in regards to S-shaped stiffness-strain relation.
The thresholds of kinematic surfaces Y; depend on the soil. Typical strain rates around structures rarely exceed 0.1%
[13, 104]
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Soil stiffness at small strains is measured by the means of dynamic testing. The standard
parameter indicating small-strain stiffness rate is the initial shear modulus Gq. In soil dynamics
two types of seismic waves can be distinguished: body waves and surface waves. Surface waves
propagate on ground face or along the interfaces of soil materials with different stiffness. They
are dispersive and originate from the interaction of shear and compressive waves at the surface.
Two types of surface waves can be differentiated: Rayleigh waves and Love waves. Rayleigh
waves move elliptically in the vertical direction away from a surface energy source, whereas
Love waves propagate horizontally form the epicentre [40].

The body waves, shown in Fig. 2.6, travel through a soil at given velocity, controlled by
its stiffness and density. Primary compressive waves (P-waves) mainly depend on volumetric
compressibility of soil, whereas secondary shear waves (S-waves) account for material shape
change with no impact to volume. The values of shear and oedometric moduli can be calculated

based on soil wave propagation velocity and material bulk density p:
Eocqo = pvf), Go = pv?2, (2.20)

where v, and v, are the velocities of a P-wave and a S-wave, respectively.

Although, it may vary, depending on the investigated material, in general, small strains are
considered up to the value of v = 1073. Inside the zone 1 the soil behaviour is considered
purely elastic and the strains are fully recoverable. Stiffness moduli are at their maximum
and, for practical purposes, these parameters are assumed constant up to the elastic threshold
restricted by kinematic surface Y;. Typically, the elastic limit is contained within the range of

v = 107% = 107*. In Fig. 2.7 the linear soil behaviour in zone 1 is presented for the example

propagation direction I

polarisation
(P-wave)

<=>

)

vertical
polarisation
(S-wave)

(®)

Fig. 2.6: Seismic small-strain stiffness identification of a isotropic soil material: a) compressive P-wave, b) shear S-wave,
after [19]
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Fig. 2.7: Stress-strain relation of Toyoura Sand. The results of a) a torsional shear test and b) a plane strain compression

test show the strain range within which the material response is elastic, after [159]

of Toyoura Sand [159]. For this material the value of the surface Y; has been tested to be at
v =5x10"% and &, = 2 x 107°. The results of the plane strain compression test (Fig. 2.7b)
show a non-recoverable response during the first unloading-reloading cycle, suggesting some
degree of non-elastic soil behaviour. However, for very small strain values, the secant stiffness
modulus measured during unloading-reloading is consistent with the one obtained during the
initial loading. Similar trends are observed for the triaxial tests conducted on both kaolin and
undisturbed Tokyo Bay Clay samples [114], subjected to isotropic and anisotropic consolidation.
These results indicate that, within this strain range, the soil behaviour can be considered truly
elastic [82].

When deformation extends into zone 2, it remains fully recoverable, however, the stress-
strain relationship of soil becomes nonlinear, and load-unload cycles form closed hysteresis
loops. According to [82], the energy dissipation reflected in these hysteretic loops arises from
localized, small-scale yielding at particle contacts.

One of the key features of soil behaviour within this kinematic zone is the strong dependence
of soil stiffness on the recent stress history [12, 141]. This effect is illustrated in Fig. 2.8 for
reconstituted London Clay samples, subjected to drained compression or extension tests [12].
The samples were loaded along a constant p path (0A), but the initial stress point (0) was
approached from different directions (6 = —90°, 0°, 90°, 180°). Depending on the path rotation
f, the corresponding tangent shear stiffness Gy changes. In case of drained compression, the
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Fig. 2.8: The influence of stress history on the reconstituted London Clay stiffness. Triaxial drained extension and

compression tests for constant p paths (0A) preceded by stress paths at different angle 6, after [12]

highest value of Gy was obtained for § = 180°, whereas the tangent shear stiffness of a sample
subjected to 6 = 0° path is almost six times smaller. Similar trend is evident for the drained
extension tests. This effect diminishes at larger strains, where the stiffness converges to the
same value regardless of stress history.

Kinematic surface Y5 denotes the plastic threshold of soil. Reported values of elastic thresh-
old range from 107* to 1073 for overconsolidated stiff clays, e.g. [81]. Beyond this boundary,
connections between particles fail and as a result particle movements follow.

Transition from zone 2 to zone 3 entails further development of deformation albeit of the
unrecoverable one, which can be distinguished by open hysteresis loops. Such change is illus-
trated in Fig. 2.9 showing the stress-strain behaviour of reconstituted Magnus till subjected to

undrained triaxial test. The three load-unload cycles were performed. After the first stage, the
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Fig. 2.9: The load-unload cycles of a Magnus till sample, showing transition from zone 2 to zone 3 (dashed line), after
(82]

obtained response is clearly within the zone of recoverable strains, characterised by nonlinear
hysteretic loop. However, as the deviator load increases, in two next cycles, the permanent
strains become notable, as well as creep at constant q.

Within zone 3 the biggest drop of soil stiffness can be noted (Fig. 2.5), hence the modelling
of soil behaviour within this strain range has crucial practical applications in geotechnical
structural serviceability evaluations [44]. Further loading can lead to reaching kinematic surface
Y3 - yield surface. Beyond this border large plastic strains occur and soil attain the state of

normal consolidation [60].

2.2.1 Stiffness degradation modelling

Nonlinear approach to stiffness modelling, described in Sec. 2.1, properly reflects initial stiff-
ness and its depth-dependent distribution. Soil stiffness increases with the mean stress level p,
however it simultaneously decreases with strain. Therefore, to accurately model the pre-failure

behavior of soil, it is necessary to account for both barotropy and stiffness degradation.



18 2 Nonlinear pre-failure stiffness of soils

In literature one can find numerous proposals of stiffness-strain modelling. In order to main-
tain a realistic nature of material stiffness, a chosen stiffness-strain relation should properly
simulate soil behaviour under cyclic load. This can be fulfilled by incorporating the effects of
hysteresis into a model - a material response to load cycle forms a closed hysteretic loop in
stress-strain space. One of the most commonly used hysteretic models, which describes secant

shear modulus degradation, was proposed by Hardin and Drnevich [63]:

Get 1
GEt 14/l

(2.21)

where ~y is shear strain, v, = Tgilure/ Ggef denotes threshold strain. Santos and Correia [142]
suggested the modified version of the Eq. 2.21:

Gt 1
Gyt 1+ 2y/v07

(2.22)

Here, the threshold strain g7 corresponds to the value of secant shear modulus Ggef reduced
to 0.7 Gy

The main drawback of the aforementioned expressions is the potential difficultly in tracking
stress-strain history of a material, especially concerning stiffness recovery following sharp stress
path reversals. For example, the relation in Eg. 2.22 is used in the small-strain constitutive
model (Hardening Soil-Small model) proposed by Benz [19]. The HSS model was developed
as a refinement of the popular Hardening Soil [143] model used in commercial FE codes, as
it extends the HS model with small-strain stiffness definition. However, in case of HSS model,
if a small unloading-reloading cycle occurs during monotonic loading (caused, for example, by
dynamic disturbance), the stress history may be erased and, as a result, the obtained stiffness
becomes much greater than in reality [120]. This phenomenon is known as overshooting. A
proposed solution to the problem of overshooting in the HSS model is presented in [48].

Models, which properly control stiffness changes during small stress reversals are based on
the concept of nested yield surfaces. This idea was first presented in works by Mréz [113] and
Iwan [78]. The general assumption of a model is to define a finite number of yield loci in stress
or strain space. The innermost surface corresponds to the range of small-strain elastic stiffness,
whereas the outermost surface is associated with a conventional bounding surface. In theory,
every loci can be subjected to kinematic or anisotropic hardening, meaning its shape and size
can change with increasing stress. However, it would result in an introduction of additional
state variables and a complex formulation and implementation. Hence, in numerous models,
the inner surfaces are only capable of movement, and any hardening effects are applied to the

bounding surface.
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Fig. 2.10: Schematic presentation of the concept of nested yield surfaces f; in stress space for the case of uniaxial

compression, after [113, 118]: (1) loading, (2) unloading, (3) reloading

The schematic example of a multi-surface model performance, in stress space, is presented
in Fig. 2.10 for a uniaxial compression. The initial stress point is in the middle of the innermost
nested yield surface, determining the elastic behaviour of the soil. With the increasing stress,
the boundary of the first surface is approached. When the value of the current stress exceeds
this limit, the response of soil becomes elasto-plastic, and the first plane gets pulled along.
As stress continues to increase, the consecutive surfaces are activated. This action is directly
related to stiffness degradation of the soil. Additionally, along with the change of location of
the nested yield surfaces, the stress history is established. The movement of the loci continues
up to the immovable bounding surface. This surface is reached once the shear strength criterion
is satisfied. In certain cases, the surface may coincide with the state of normal consolidation,
but only in the absence of hardening. A stress path reversal occurs in case of unloading. It
results in the deactivation of the all surfaces. In consequence the soil response is elastic again

and stiffness regains its initial value.
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The concept of nested yield surfaces was utilised in so-called bubble models [5, 6]. In this
case a singular surface is implemented (a bubble) defining small-strain elastic behaviour of soil.
In another model, presented in [137], three yield surfaces are described, which subsequently
correspond to kinematic zones proposed by Jardine [82].

A multi-surface model, formulated in strain space, was proposed by Simpson et al. [149],
and later validated with the numerical simulation of retaining structures [147]. In order to
describe this model, an analogy of a person pulling a number of bricks around a room is used.
A schematic explanation of this comparison is presented in Fig. 2.11. The room represents strain
space and the person walking around it symbolises a current strain state. Bricks are tied to the
person with a set of strings. Each string has a different length that corresponds to the radius
of a consecutive nested yield surface. At initial state, the position of the man and the bricks is
close to each other and every rope is slack. The value of soil stiffness modulus is then considered
to be at its maximum. The moment the person starts to move the bricks gradually follow the
same path, beginning with the ones tied to the shortest strings. Every time the man begins
to pull the next brick, the soil stiffness degrades in stepwise fashion. The minimum stiffness

is obtained when all bricks are in motion. In case of a sudden change of a loading direction
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Fig. 2.11: An analogy of a man pulling bricks used to describe Brick model proposed by Simpson [147]. Stiffness degrades
in stepwise fashion during the monotonic strain path (1-3) but its initial value is recovered due to the sudden unloading

(4)
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in strain space, 7.e. the person turns back or stops, the string go slack and the initial value of
shear modulus is attained.

In the original formulation of Simpson’s Brick model, the magnitude of each stiffness drop,
so-called stiffness proportion, is strictly related to the sting length s/ and the ratio of the actual
reference tangent shear modulus GI*f to the reference initial shear modulus G5f. The measure
of the string length is specified in strain space. This distance, given plane strain conditions

(€31 = €93 = £33 = 0), can be expressed as Euclidean norm:

|e]| = /eies = \/5%/ + (€22 —€11)2 4 4efy = \/5%/ + 7 (2.23)
where three strain space components ¢, are:

€] =€y = €11 +E22, €2 =& —E11, €3="Y2 = 2612 (2.24)

and vy = \/(522 —e11)? + 42, is the diameter of Mohr’s circle.
Later, the Brick model was extended to operate in three dimensional space, defined with six
stain components €; [39, 99]:

2e99 — €11 — €33
€1 =€y = €11 + €22+ €33, € =¢E33 €11, €3= 73 ) (2.25)

€4 = V12 = 2612, €5 = Y3 = 223, € = Y31 = 2€13.

In this case, the Euclidean norm takes the following form:

6
/ 3
el] = | D &6 = \/e%/ +(&&+..+e)= \/szv + 362 = e} + iygct, (2.26)
i=1

where ey and €, are volumetric and deviatioric strain, respectively and

4
Noct = |\ 3€i€ij = (2.27)

2
= g\/(fn — £99)2 4 (€22 — €33)% + (e33 — €11)? + 6(eTy + €35 + €3,)

is the octahedral shear strain.

The Brick procedure itself is only responsible for the description of stiffness-strain rela-
tion. Hence, an advanced elastic law that determines soil response within small-strain range
is required to obtain a properly formulated constitutive model. The Brick-type models are
found to be especially effective considering the simulation of clayey soil behaviour, e.g.
4, 39, 45, 48, 99, 148|.
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Anisotropy of soils

Soil deposits have been formed, over millions of years, due to geological, chemical, biological
processes and climate changes (glacial periods). Weathering products of a parent material are
transported to other regions through agents (e.g. water, wind, landslides) and then subjected to
sedimentation and deposition. All postdepositional processes concerning changes in a sediment,
such as diagenesis, cementation and consolidation affect directly soil microstructure and its
physical, mechanical and hydraulic properties [110, 112].

In the early stages of deposition, particles of fine grained cohesive soils tend to align edge-
to-face, which is caused by their magnetic properties; an edge of a singular clay shale is charged
positively, whereas a face - negatively [18, 128]. This so-called honeycomb structure exhibit
isotropic properties and is characterised by relatively high porosity. Such soils typically originate
from young Holocene marine and lake deposits [160]. These are usually very compressible soft

soils.

@ (b)

Fig. 3.1: SEM images of shale microstructure contacts: a) edge-to-face, b) face-to-face, from [170]
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While undergoing consolidation process, soil microstructure is subjected to volumetric strain-
ing, in consequence creating more compacted face-to-face arrangement of clay particles oriented
normal to the stress direction. This laminate structure is especially a characteristic of stiff over-
consolidated clay soils, subjected to one-dimensional consolidation, which mechanical properties
depend on particle orientation. Due to material packing, void ratio decreases and small fissure-
like pores form along distinctive layers resulting in anisotropic hydraulic nature of such clays
[170]. Both honeycomb and laminar type of microstructure, captured using scanning electron
microscopy technique (SEM), are presented in Fig. 3.1.

Permeability of a soil deposit may vary due to local changes of soil mineralogy, microstructure
and material discontinuities. It is possible that dissipation of pore water can occur at a slower
rate than the sedimentation process. In result, upward water migration can be prevented by
compacted soil layers with reduced permeability. Zones, in which high excess pore water pressure
is generated, exhibit the behaviour of normally consolidated, thus maintaining edge-to-face
microstructure. Such soil behaviour under locally varying hydraulic properties is portrayed in
Fig. 3.2. This process, however, is temporary, as under growing overburden load, the particle
structure collapses creating face-to-face contacts [144].

Soil structure, geological history and in situ stress state induce either isotropy, cross-
anisotropy or orthotropy in a soil material. Granular soils and normally consolidated clays
with a random particle orientation are typically isotropic - their properties do not change with
orientation. A cross-anisotropic (transversely isotropic) material exhibits direction-dependent
properties that are symmetric about the axis normal to the bedding plane arrangement, so-

called plane of isotropy. A more detailed description of such soils is presented later in this
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Fig. 3.2: Scheme of soil compaction disruption caused by local permeability changes, after [144]
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chapter. The most complex soil behaviour, orthotropy, assumes different parameter values for
all three mutually perpendicular directions. It usually can be applied for rock masses with
prominent joints and discontinuities. Directional dependency of isotropic, cross-anisotropic and
orthotropic material is shown in Fig. 3.3.

The mechanical behaviour of soils assumed as isotropic has been well studied over years.
In contrast, the response of both cross-anisotropic and orthotropic soils are yet to be fully
understood, due to the complex and expensive laboratory testing. In this work the analysis of
the directional-depended behaviour of the soils is limited to overconsolidated fine-grained clays
and those are mostly cross-anisotropic. Hence, in this chapter the emphasis is mostly put on

the description of the cross-anisotropy.
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Fig. 3.3: Schematic description of a isotropic, cross-anisotropic and orthotropic materials. Soil properties remain un-
changed in terms of: a) isotropy - regardless of axis orientation, b) cross-anisotropy - symmetric about normal to plane

of isotropy, c¢) orthotropy - for the mirroring axes, after [118]
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3.1 Inherent and stress-induced anisotropy

Two types of anisotropy in natural soil deposits can be distinguished: inherent and stress-
induced. Geological processes, which influence soil microstructure and, consequently, the orien-
tation of the microstructure coordinate system, directly affect the so-called inherent anisotropy.
Typically, inherent anisotropy exhibits characteristics of cross-anisotropy, meaning that soil
properties remain unchanged about the axis normal to the plane of isotropy. This axis, denoted
by the unit vector v (Fig. 3.4), corresponds to the direction of material deposition. For over-
consolidated, fine-grained, stiff soils, the plane of isotropy is defined by the prevailing particle
arrangement, which creates distinctive bedding planes. As shown in Fig. 3.5, bedding planes
are usually formed horizontally, however, an inclination of the plane of isotropy is possible,
especially in older stiff clayey sediments. Inherent anisotropy depends only on the orientation
of the material microstructure and, in the case of heavily overconsolidated natural clays, re-

mains constant and insensitive to significant changes in stresses and strains. Reconstituted
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€Y (b)

Fig. 3.5: Distinctive layered particle arrangement corresponding to a material’s plane of isotropy: a) horizontal bedding

planes of a boulder clay, own source, b) inclined bedding planes of a boulder clay in Gutio mine, own source

and slightly overconsolidated soils may undergo microstructural changes during extensive, ir-
reversible strains, hence, in this instance, the anisotropy of the microstructure may evolve
[40, 47, 108]. Pure inherent anisotropic behaviour of soil can be properly measured only under
isotropic stress conditions, as the stress-controlled component of anisotropy is deactivated.
Stress-induced anisotropy of soil material depends in part on stress history and its in situ
state. The most common indicator of the initial in situ stress state is denoted as the coefficient
of earth pressure at rest K. It describes the relationship between horizontal effective stress
component and a vertical one: Ky = ¢*. Soil material subjected to loading and unloading due
to geotechnical processes may experience enhancement of the stress-induced anisotropy as all
the values of principal stress components could be different and their rotation may occur.
Anisotropy of natural soils is rather complex as it includes the superposition of inherent
and stress-induced anisotropy. Its definition depends on three principal axes, as shown in Fig.
3.4. Geometrical coordinates x; are usually collinear with the direction of gravity. In this dis-
sertation, unless stated otherwise, axis x5 is determined as vertical. Microstructural axes x,;
correspond to prevailing particle arrangement of soil. In terms of horizontally distributed sed-
iment, the analysis is simplified as both geometrical and microstructure coordinate systems
align. Orientation of principle axes of stress ng; is independent in relation to microstructure
coordinates, and may rotate due to introduction of additional loads and undergoing geotechni-
cal engineering processes. Ultimately, the anisotropy of stiffness and strength depends on the

orientation of three axes: geometric, microstructural, and principal stress directions.
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3.2 Experimental evidence of mechanical anisotropy

Anisotropic behaviour of soils is especially noticeable in the range of small strains (soil stiffness)
and large strains (shear strength). Overconsolidated clays, with the prevailing particle arrange-
ment, are mostly anisotropic in terms of stiffness and strength. However, it is important to
mention that anisotropic stiffness tested in undrained conditions influences the stress paths, so
it also affects the undrained shear strength of a tested specimen [150]. Strength anisotropy can
also be evident for soft clays and sands but it is mostly due to its stress-induced component,
as it can develop in previously isotropic material subjected to plastic deformation and loading
[38]. Inherent anisotropy in sand depends on particle contacts and there have been reported
cases of sands showcasing cross-anisotropic fabric, e.g. [9, 126]. In rock mechanics, a material is
generally anisotropic in case of stiffness and strength, however, due to so-called planes of weak-
ness, induced by e.g. bedding planes or discontinuities, the the influence of strength anisotropy
seems to be especially important.

Laboratory testing of anisotropic properties of soils can be quite difficult, as it is required to
examine the sample in different directions. Hence, the advanced laboratory equipment is needed,
as well as, the specific testing procedures should be followed to properly obtain anisotropic
parameters. It could be very expensive and time consuming. However, as the importance of
anisotropic mechanical properties of soils has been recognised for numerous geotechnical engi-
neering cases e.g. [3, 4, 22, 83, 123, 138, 147, 179, 180], the need to properly define material

anisotropic properties has become evident.

3.2.1 Small-strain stiffness anisotropy

Soil stiffness can be tested either in situ or using high accuracy laboratory equipment. Schematic
examples of various small-strain stiffness surveying techniques are illustrated in Fig. 3.6. In the
case of field seismic analysis, wave propagation velocity of compressive and shear waves can
be measured with such methods: cross-hole, down-hole and CPTU seismic tests, whereas the
surface waves - Rayleigh waves - are used for Spectral Analysis of Surface Waves (SASW) and
Continuous Surface Wave System (CSWS) method [19, 40, 44, 107].

Compared to field investigations, laboratory testing is expensive, time consuming, complex
and additionally carries a risk of sample disturbance. Still, it provides more detailed data
of small-strain stiffness and its nonlinear degradation [19]. The small-strain stiffness of soils
is usually measured in laboratory environment by advanced triaxial devices, equipped with
seismic elements or local displacement transducers, a resonant column or a torsional shear

instrumentation [40, 47, 65, 146]. Determination of anisotropic small strain stiffness parameters
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Fig. 3.6: Schematic representation of the typical field (a-d) [19, 40, 44] and laboratory (e-h) [40, 47, 65, 146] seismic
tests: a) cross-hole, b) down-hole, ¢) seismic CPTU test, d) Continuous Surface Wave System (CSWS) - measured with
dispersive Rayleigh waves vg, €)resonant column, d)hollow cylinder apparatus, e-f) triaxial apparatus with displacement

transducers and bender elements, respectively

is, in the most cases, performed in the triaxial apparatus with seismic bender elements, which
are designed to measure the velocity of shear wave. The standard setup, shown in Fig. 3.7,
assumes a cross-anisotropic soil sample to be trimmed in the direction parallel to the symmetry
axis. The bender elements are oriented in such way that the polarization of the generated shear
wave corresponds to the plane of isotropy [85]. Generally, the bedding planes of an anisotropic
specimen in the triaxial device should be oriented horizontally or vertically, otherwise shear
deformation during the compression occurs [7] and the test cannot be classified as an element
test.
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Fig. 3.7: Examples of soil sample trimming and applicable shear wave velocity measurements, after [85]

Assuming cross-anisotropic characteristics of soil, in order to obtain the proper small-strain
behaviour description, five independent material constants are required. Most commonly used
parameter set contains: Young’s modulus in vertical direction F,, Young’s modulus in horizontal
direction E}, Poisson’s ratio due to the vertical stress on the horizontal strain v, Poisson’s
ratio due to the horizontal stress on the horizontal strain v, and shear modulus in vertical
plane G, [103]. Due to the simplicity of, the subscript ()o, which specifies initial or small-strain
parameter values is here omitted. Overall, the determination of all five parameters from the
laboratory testing is very difficult, however it has been reported [52] that, using the triaxial
apparatus with multi-directional piezoelectric sensors installed, as illustrated in Fig. 3.8, it is
possible to obtain substitute set of five seismic stiffness parameters from one soil sample. The

stiffness matrix for such obtained parameters is as follows:

011 FEoedn Doz Eoedn — 2Grn 0 0 0 ST
092 Dos FEoedv Dos 0 0 0 €92
033 _ Eoean — 2Ghn Das FEoedn 0 0 0 £33 | (3.1)
012 0 0 0 G 0 0 Y12
093 0 0 0 0 Guw O Y23
031 0 0 0 0 0 Gwm Y31
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Fig. 3.8: Schematic representation of wave propagation velocity measurements using multi-directional piezoelectric

sensors: a) compressive waves, b) shear waves, c) oblique waves, after [52]

where Foeqn and Fyeq, correspond to constrained oedometric moduli acquired from compressive
P-waves propagated in horizontal and vertical directions respectively, G,, and Gy, are shear
moduli in vertical and horizontal planes accordingly using shear S-waves; stiffness component
Dy3 vastly depends on propagation velocity of oblique P-wave vy,. Both oedometric and shear

moduli can be calculated according to Eq. 2.20:
Eoedh - PV%, Eoedv - sz2;7 (32>

Ghn = Vi, Gon = pVap, (3.3)

whereas the value of Da3 can be obtained from the Stokoe solution [157, 158]:

Voo — A _ B, (34)

for which:
A = Eyoqn sin® 0 + Eoeqy €052 0 4+ Gop, (3.5)

B = \/[(Eoedh — Gon) sin? 0 — (Eoeqy — Gon) €082 0]2 + 4( Doz — Gyp,)? sin? 6 cos? 6. (3.6)

Given seismic parameters in Eq. 3.1 the conversion to standard cross-anisotropic parameters

can be done as follows:
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E, = D—SB + Eoedo (3.7)
G — Foedn ’
Eh _ 4th(D33 + (th - Eoedh)Eoedv) (38)
D35 — Eoedn Foedu ’
v — D33 + 2Gn Eocas — Focdn Foedu (3.9)
D35 — Eoean Eocdu ’
Das (3.10)

Uyp, = .
" 2(—Ghn + Eoean)

Following [58], three anisotropy coefficients, indicating the degree of soil inherent anisotropy,

has been proposed [108]:

where G, is the shear modulus in the plane of isotropy:

G
ag = ?M’ (3.11)
vh
FE
ap = Eh (3.12)
Vnh
y=—), 3.13
o (3.13)
E
Gy = ——m. 3.14
hh 2(1 — th) ( )

In terms of cross-anisotropy G, and Gy, are assumed equal, as confirmed by laboratory testing

shown in Fig. 3.9.

In addition to the anisotropy coefficients ag, ag, a,,, two anisotropy exponents rgg and g,

has been introduced, following the relations:
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Fig. 3.9: Relations of soil stiffness parameters in case of: a) Gault Clay, after [129], b) London Clay, after [85]
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Fig. 3.10: The overview [108] of the laboratory results of cross-anisotropic parameters conducted for different clays
[67, 100, 136, 140, 175]: a) the relation between the anisotropy exponent z¢g and the mean stress p, b) Poisson’s ratio

in vertical and horizontal plane; due to the big data scatter it is impossible to determine the value of za.

ag = off", ag = a,ov. (3.15)
Based on the overview of experimental tests on anisotropic stiffness parameters presented in
[108] and illustrated in Fig. 3.10, the average value of the exponent zgg is approximately 0.8.
The value of x¢, is unknown, as the laboratory test results of v,, and v}, show a large scatter.

The joint effect of inherent and stress-induced anisotropy on initial soil stiffness can be
expressed [62] as:

Goij = Sy F(e) (OCR)*pl ™™ giah (3.16)
for which, indexes ¢ and j correspond to directions of seismic wave propagation and polarisa-
tion, respectively, and principal stresses o0, 0; indicate the plane of measured soil stiffness G;;
and S(;;) is dimensionless elastic stiffness coefficient. The function F(e) describes material void
ratio, material constant £ is associated with plasticity index PI and overconsolidation ratio
(OCR), whereas ni and nj are the empirical exponents. Soil stiffness is calculated for refer-
ence mean pressure prs. This expression has been validated for numerous clayey soils [79]. In
another laboratory triaxial testing on the reconstituted clay [111], the samples were subjected
to isotropic (K, = 1.0) and anisotropic (Ko # 1.0) loading. For such paths, the shear moduli
were tested in the vertical and horizontal directions and the value of anisotropy coefficients a¢
were calculated. Obtained values of a differed based on the value of K, clearly showing that

stress-induced anisotropy influences the shear moduli G;;.
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The review of cross-anisotropic elastic parameters of reconstituted and natural stiff clays
based on the literature study is summarised in Tab. 3.1. The values of cross-anisotropy coeffi-
cients in the case of overconsolidated natural stiff clays tend to be greater than 1.0, meaning
that the soil stiffness is generally higher in the plane of isotropy corresponding to the direction
of the symmetry axis (Gpy, > Gopn, En > E,). However, it should be noted that stiffness mea-
sured in situ or under anisotropic stress conditions Ky # 1.0 displays mixed situation of both
inherent and stress-induced anisotropy, as the pure microstructure effect can be measured un-
der isotropic stress state only. Poisson’s ratio is quite difficult to study experimentally, so there
is still a lack of high quality laboratory evidence on the coefficient «,. Contrary to common
knowledge on the isotropic Poisson’s ratios, in the case of cross-anisotropy, the negative values

of Poisson’s ratio are possible, especially in the case of vpy.

3.2.2 Shear strength anisotropy

Shear strength of soil and its anisotropic characteristics are particularly important in situations
where ground movement needs to be considered, such as slope stability problems. The loading,
unloading or reloading of the subsoil leads to the rotation of the principal stress directions.
The influence of principal stress rotation on shear strength parameters has been proven in e.g.
[11, 30, 96, 124]. Hence, strength anisotropy is tested with the regard to the angle o between
the direction of major principal stress o and vertical direction.

Standard equipment used to determine shear strength anisotropy parameters is either triaxial
apparatus or hollow cylinder apparatus. In the case of triaxial apparatus, the sample can only
be tested for the a values being equal to 0° or 90°, whereas for the HCA it is possible to test
sample at any « angle [178]. Fig. 3.11 illustrates the components of stress and strain in the
hollow cylinder apparatus. The values of the principal stress components o1, 09, 03 and the
angle a can be controlled independently through the separate application of inner and outer
cell pressures, axial force and torque [68].

The relation between principal stress values is controlled by the intermediate principal stress
ratio b:

09 — 03

b=

(3.17)

o1 — 03

The b value varies from 0 to 1 where b = 0 is triaxial compression and b = 1 is triaxial extension.

In the case of the torsion shear test with the same inside and outside cell pressures, the b value
relates to the angle o such that [96]:

b = sin®a. (3.18)
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Table 3.1: Review of laboratory results on cross-anisotropic elastic parameters of reconstituted and natural stiff clays.

3 Anisotropy of soils

Reference Soil Test ap Vyh Vhh ag Remark
[166] (1959) Ward et al. London Clay (N) TX 1.16 — 1.54 — — — Ko=1.0
[11] (1975) Atkinson London Clay (N) PS, TX 2.0 0.19 0.0 1.9 Ko=1.0
[66] (1997) Hight et al. London Clay (N) c-h,d-h, 0.95 — - 1.45—-2.3| in situ,
HCA,TX,RC Ko > 1.0
[66] (1997) Hight et al. |Thanet Beds Clay (N) c-h,d-h, 09-1.1 — — 1.3-1.6 in situ,
HCA,TX,RC Ko > 1.0
[129] (1997) Pennington et Gault Clay (N) TX+BE - - - 2.25 —2.75| Ko =2.1
al.
[129] (1997) Pennington et Gault Clay (R) TX+BE — — — 1.3—-16 | Ko =1.0
al.
[85] (1998) Jovic¢ic & Coop| London Clay (N) TX+BE = — — 1.5—-1.6 | Ko =1.0
[85] (1998) Jovicic & Coop| London Clay (R) TX+BE — — — 14—-15 | Ko=1.0
[92] (1999) Kuwano Kaolin (R) TX+BE - — - 1.75-2.0| Ko=1.0
[100] (2000) Lings et al. Gault Clay (N) TX+BE, 3.97 000 | —0.04 |1.8-225| Ko=2.0
TX+4+DT
[122] (2005) Nishimura London Clay (N) |TX+BE, RC, 1.9 — — 1.8—-22 | Ko=1.0
HC
[122] (2005) Nishimura London Clay (N) TX+BE, 1.9 — — 1.8 -2.2 in situ,
RC,HC Ko >1.0
[175] (2005) Yamashita NSF Clay (R) TX+BE | 1.4-20 - - 15-23 | Ko=1.0
[97] (2006) Landon & | Boston Blue Clay (N) BE - — - 1.68 unloaded
DeGroot
[136] (2006) Piriyakul Boom Clay (N) TX+BE - - - 14—-16 | Ko =1.0
[136] (2006) Piriyakul Boom Clay (R) TX+BE - — - 1.2—-15 | Kop=1.0
[136] (2006) Piriyakul Boom Clay (N) TX+BE+DT — 0.0 0.03 14—-2.0 | Ko=20
[57] (2007) Gasparre et al.| London Clay (N) TX+BE 1.5—-2.8 |0.1-0.25| —0.19 — | 1.8 — 2.2 in situ,
(—0.02) Ko > 1.0
[177] (2011) Yimsiri & Gault Clay (N) |TX+BE+DT| 2.32 0.13 0.21 1.68 Ko=1.0
Soga
[177] (2011) Yimsiri & London Clay (N) |TX+BE+DT| 2.18 0.07 0.18 1.2 Ko=1.0
Soga
[29] (2017) Brosse et al. Gault Clay (N) TX, HCA 3.13 — — 1.9 Ko=1.8
[29] (2017) Brosse et al. |Kimmeridge Clay (N)| TX, HCA 2.4 — — 1.68 Ko =
1.7-1.8
[29] (2017) Brosse et al. Oxford Clay (N) TX, HCA 2.8 - — 2.3 Ko=1.8

(N)/(R) - natural/reconstituted clay, TX - triaxial test, HC - hollow cylinder apparatus, RC - resonant column,

c-d/d-h - cross/down hole, BE - bender elements, PS - plane strain test, DT - displacement transducers, in situ - stress state
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Fig. 3.11: Components of stress and strain in hollow cylinder apparetus, after [68, 178]

The shape of the failure surface for cross-anisotropic material has been experimentally de-
termined in [2, 88, 89]. In Fig. 3.12 the shape of the failure surface, obtained from drained
true triaxial test, is shown for the example of the San Francisco Bay Mud. The experimental
data is shown on the octahedral plane, with three sectors distinguished based on the Lode
angle 6, sector I: 6§ € [0°,60°], sector II: § € [60°, 120°], sector III: § € [120°, 180°]. The results
were obtained with the control of the b value for each sector. Two triaxial compression tests
were conducted at angles § = 0° and # = 120° and two triaxial extension tests at 6 = 90° and
6 = 180°. Due to cross-anisotropic nature of the soil, it is assumed that the surface is symmetric
around the axis normal to the plane of isotropy, in this case inclined horizontally. The data
was compared to the isotropic Mohr-Coulomb and Lade [93] failure criteria. It is evident that
cross-anisotropy of the fabric influences the shear strength of a soil.

In rock mechanics anisotropy of rock masses is common. In fact, purely isotropic rocks rarely
occur and are regarded as exceptions [28]. At micro level, anisotropy is mainly influenced by a
material fabric, its schistosity, bedding, foliation and fissility [76, 162]. At macro scale, however,
the material anisotropy is depended on joints, so-called discontinuities, developed in rock mass.
In [71] the strength of jointed rocks is determined as completely relying on the degree of rock
interlocking. A rock material showcases a highly anisotropic behaviour if one set of joint is
considered. Alternatively, if at least three joint sets intersect each other, the strength of rock
is regarded as isotropic and homogenous.

Due to the general anisotropy of rock masses, the strength obtained from laboratory testing

should be referred to the angle 8 between the plane of weakness and the loading direction oy.
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Fig. 3.12: Experimental failure surface obtained from the drained true triaxial tests conducted on the San Francisco
Bay Mud samples [2]. Three sectors have based on the Lode angle 6 have been distinguished. Tests were controlled by
the value of the intermediate principal stress ratio b [95]

The values that are of the most interest are the maximum and the minimum rock strength. The
ratio between these extreme strength values is regarded as the maximum strength anisotropy
of a rock [139]:

Oc(max)

R, = : (3.19)

O¢(min)

where the R, ratio refers to uniaxial compressive strength. As shown in Fig. 3.13, the uniaxial
compressive strength of a rock mass depends on the planes of weakness and [ angle. The
maximum value of strength o¢max) is obtained when the loading direction is perpendicular
or parallel to the weakness plane (fBmax) = 0% Bmax) = 90°), whereas the lowest strength is
reported to be reached for f(yn) = 30° — 45°, due to the additional shearing along the bedding
planes occurring.

Strength anisotropy of rocks can also be classified with the commonly used point-load

anisotropy index I, adopted by the International Society for Rock Mechanics [53]:

I
I, = S60L (3.20)
Ls(s0)]
where Iys0)1 and 50y are the point-load strength indexes of a sample with bedding plane
orientation perpendicular and parallel to the load, respectively. The point-load index Iysg) is

described as:
P

It (3.21)

Is(50) =
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Fig. 3.13: The theoretical uniaxial compressive strength o. of a rock mass depending on the plane of weakness and the
angle 3. The maximum values of the compressive strength are obtained when fmax = 0° or B(max) = 90°, the minimum
strength when B(min) = 30° — 45°, after [139]

where P is a load needed for the failure to occur, and D is a core diameter of a specimen. A
standard size of the sample diameter has been adopted to be D = 50 mm. As shown in Fig.
3.14, when the sample, with the foliation distribution perpendicular to the load, is tested, the
obtained I ) index is at its maximum. The minimum value of Iysg) is found for the sample
with bedding planes oriented parallel to the loading, due to splitting that occurs along the
plane of weakness.

The classification of rock masses based on their anisotropic ratio R. and point load anisotropy
index I, is shown in Tab. 3.2. Low strength anisotropy can be attributed to metamorphic rocks
of a medium irregular grain size. Fine-grained rocks with the distinctive bedding planes are

usually highly anisotropic.

Table 3.2: The classification of strength anisotropy for various rock masses, after [161, 162].

Anisotropy classification Rock types Anisotropy ratio Rc|Point load anisotropy index I
Quasi-isotropic Hornfels, granulite, quartzite 1.0-1.1 <11
Fairly anisotropic Mylonite, shales, granitic gneiss 1.1-2.0 1.1-1.5
Moderately anisotropic | Quartz schist, schistose gneiss 2.0—-4.0 1.5—-25
Highly anisotropic Hornblende schist, mica schist 4.0 —6.0 2.5—-3.5
Very highly anisotropic Phyllite, slate > 6.0 > 3.5
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Fig. 3.14: Point-load strength index of three rocks with the regard to the angle o between horizontal core axis and the

plane of weakness, after [1]
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Constitutive modelling of anisotropy

It has become both popular and convenient to analyse geomechanical initial boundary value
problems using numerical methods. In practice, material models are typically implemented
within the finite element method (FEM), where soil is treated as a continuum. The use of finite
element codes enables reliable analysis of complex multi-phase engineering problems involving
the interaction between geotechnical structures and the soil. Numerical simulations are also
valuable for calibrating the material parameters of advanced constitutive models by comparing
element test results with laboratory data.

Nowadays, available commercial FE computer programs include a wide selection of constitu-
tive models designed to simulate different aspects of soil behaviour (barotropy, stiffness strain
degradation, softening, creep, shear strength, anisotropy). However, the choice of the proper
material model needs to be done by a designer, based on the experience and knowledge, taking
into consideration such factors as: structural problem or soil material parameters availabil-
ity. For example, applying basic Mohr-Coulomb model for normally consolidated clay deposits
could potentially generate higher undrained strength of the soil that it is in reality. Moreover,
yielding effects of soils, which are important to take into account in slope or foundation stability
analyses, may be not crucial for structural designing where prefailure soil behaviour is generally
more important.

Commercial computational programmes, by default, offer only the isotropic material models.
Numerical implementation of isotropic models is simpler and more straightforward, compared
to complex anisotropic and orthotropic models, as parameter directional dependency does not
need to be taken into account. In the case of isotropic linear elastic modelling, only two material
constants are required (e.g. Young’s modulus F and Poisson’s ratio v or bulk modulus K and
shear modulus G).

In comparison, to define cross-anisotropic material, five soil independent parameters are

needed, or in the case of the orthotropic material - nine independent constants. The inclusion of
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anisotropic soil stiffness or strength in the material model previously developed as isotropic may
be quite complex. It is due to the fact that isotropic models are often implemented considering
three-dimensional stress or strain invariants space and not six-dimensional stress or strain space
which is needed in the case of anisotropy. Due to convenience, simplicity and also costs of soil
laboratory testing, isotropic models are a preferred choice.

However, the experimental evidence has shown that soils, especially overconsolidated fine-
grained soils, tend to be highly anisotropic (see Sec. 3.2). The importance of anisotropy has
been proven in numerous analyses of practical geotechnical cases, especially including the tun-
nelling and excavation problems. For example, Fig. 4.1 compares settlement troughs obtained
from numerical simulations with those measured in the field. For the isotropic linear elastic
model and the two isotropic nonlinear models .4 and J4, the simulated settlement troughs are
excessively wide and shallow. In contrast, the soil response is captured more accurately with
the nonlinear models AJ4i and AJ4ii, which incorporate stiffness anisotropy. It proves that, ne-
glecting anisotropic behaviour in numerical modelling may result in unrealistic, as compared to
further field monitoring, deformation and may lead to potential structural problems, especially

in the case of tunnel drilling simulations in urban areas.
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Fig. 4.1: Surface settlement profiles obtained from the numerical simulation of a tunnel drilling problem [4] with the
use of a) isotropic material models, b) anisotropic material models. The soil response was compared to the field data
[156]. In the case of isotropic model analysis, the settlement troughs are too shallow and too wide compared to the field

data. With the use of anisotropic material models, it was possible to improve soil response
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The elements of the constitutive model, which need to be taken into consideration to simulate
properly anisotropic soil behaviour, are stiffness nonlinearity (barotropy and strain degrada-

tion), inherent anisotropy, stress-induced anisotropy and shear strength criterion.

4.1 Small-strain

4.1.1 Linear elastic models

The most basic form of modelling elastic anisotropy is to use linear elastic orthotropy. Stiffness
matrix, written in 6 x 6 Voigt notation, contains 36 independent stiffness component. Taking
into account the Cauchy stress tensor symmetry the number of components is reduced to 21.
However, for most materials, anisotropy is limited due to assumed planes of symmetry. Hence,
the number of needed parameters can be reduced. For the orthotropic material description the

Hooke’s law compliance matrix can be written as:

é11 E% 2 0000 011
ey 2 Eiz 20 0 0 092
€33 _ E s 00000 T33 , (4.1)
o 00 0 550 0o
Fag 00 0 0 g5 0|6
do ) [0 0 0 0 0 G| |om

To obtain a stable material description, the following conditions must be fulfilled [118]:

Ei» Gij > 0, (42>
E.
2 7
)< =, 4.3
s < (43)
1
; =1 — V191 — V13V31 — Vaglzg — Violhaslsy — Viglailse  and vy > 0. (4-4)

It is important to note that the Poisson’s ratio components are not interchangeable (v;; # v;;)

but, since a orthotropic material has three orthogonal planes of symmetry, the expression

';;—] = % is true. Taking this into account, the stress rate-strain rate relation can be reduced to
g J

nine independent parameters, as shown in Fig. 4.2. Those elastic constants are Young’s moduli:

FE., Es, E5, shear moduli Gia, Gas, G153 and Poisson’s ratio vq9, 193, 113.
) ) ) ) ) ) )
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Fig. 4.2: Elastic constants in orthotropic material, nine independent parameters: E1, E2, E3, Gi2, Ga3, Gis, V12, V23,

V13, after [171]

The influence of the individual orthotropic parameters on soil stiffness can be visualised with

the use of the orientation distribution function [165]:

0 '%C' n) = (nin; Cfpgmuny) " (4.5)

1

The result gives a scalar value of a Young’s modulus in the direction described by the unit vector
n and it is related to the fourth-order compliance tensor C'. The spherical plots of directional
distribution of stiffness are shown in Fig. 4.3. In Fig. 4.3a the values of the parameters do not
depend on the direction, hence the obtained response corresponds to the Hooke’s law isotropic
elastic stiffness. The the influence of orthotropic parameters on soil stiffness is tested by the
change of the parameter value in the relation to the initial isotropic state, as shown for the

Figs. 4.3(b-d). All nine parameters affect the obtained soil stiffness. For example, if the value of
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Fig. 4.3: Spherical plots illustrating the influence of the nine elastic constants in orthotropic material on the dimensional

distribution of stiffness: a) isotropic state, b) change of Young’s modulus E; ¢) change of shear modulus G;;, d) change

of Poisson’s ratio v;;
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E; increases, then the stiffness distribution is larger along the corresponding x; axis. Similarly,
the changes of (;; and v;; are noticeable on ij plane.

In the case of cross-anisotropy, the material model can be described using five independent
elastic constants, as shown in Fig. 4.4. The corresponding stress rate-strain rate relationship is

expressed as:

€11 _ E%l %Zh %:h 0 0 0 _ i
€92 %:h ELU %:h 0 0 0 722
€33 _ BB Elh 0 0 0 73 (4.6)
Y12 0 0 0 leh 0 0 o1z
Vo3 0 0 0 0 Gih 0 o2
Y31 0 0 0 0 0 2(1;57:}“» T51

Assuming a standard horizontal position of the plane of isotropy, the geometric axis x; coincides
with the microstructural axis x,,;. Under this assumption, the stiffness parameters can be
directly related to values measured in the vertical and horizontal directions. The definitions of
the individual material constants are also illustrated in Fig. 4.4.

In order to fulfil thermodynamic laws, elastic strain energy must be positive. In this terms
the following limits must be satisfied [131]:

Eh7 Eva G'Uh Z 07 (47>
—1 S Vhh S 1, (48)
E,
thu — Upn) — 203, >0, (4.9)
E
fh(l — ) — 202, > 0. (4.10)

The influence of five cross-anisotropic elastic parameters on directional distribution of stiff-
ness is shown in Fig. 4.5 in a form of spherical plots. The coordinate system is defined so the
axis xy is vertical. The parameters are tested analogously to the orthotropic elastic constants
from Fig. 4.3. The seemingly no influence of Poisson’s ratio v on the dimensional distribution
of stiffness results from the function o~'¢. The expression reduces in a way that is completely
not depended on vy,.

It is quite uncommon to obtain all five elastic parameters of cross-anisotropic materials by
the means of standard laboratory testing (see Tab. 3.1). Graham and Houlsby [58] proposed an

alternative in the form of simplified set of three elastic parameters: modified Young’s modulus
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Fig. 4.4: Elastic constants in cross-anisotropic material, five independent parameters: E,,
[44, 171]

E*, modified Poisson’s ratio v* and coefficient of cross-anisotropy «

based on an assumption of the following correlations:

Ey
o = _—
E,

G

th

Vnh

* *
E*=F,, V' = Upp,

Vyh

Ewn, Guh, Voh, Vnn, after

ag. This method is

(4.11)

In the regard of, mentioned in Eq. 3.15, anisotropy exponents zgg and xq,, the relation

proposed by Graham and Houlsby gives them the values: xgr = 0.5 and zg, = 1.0. The

remaining of cross-anisotropic parameters can be determined as follows:
271
Eh =o'k y

E*

Gon = 0472(1 o

(4.12)

(4.13)
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*

14
wh = —. 4.14
Vo, = — (4.14)

The five-parameter strain rate-stress rate including cross-anisotropic compliance matrix re-

duced to Graham-Houlsby three-parameter description is denoted as:

. 1 —* —* .

SN =5 apr azme U 0 0 o11

. e 1 —* .

€22 b I — 0 0 0 Fa2

. —U* —* 1 .

€33 27VE* E* 2E 0 0 0 033

=1 “ “ “ ) (4.15)

;712 0 0 0 2((1)[21: ) 0 0 C:flg

. 2(14v* .

A3 0 0 0 0 g o
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Fig. 4.5: Spherical plots illustrating the influence of the elastic constants in cross-anisotropic material on the dimensional
distribution of stiffness: a) isotropic state, b) change of Young’s moduli E} and E,, c) change of shear modulus Gy, d)

change of Poisson’s ratio vn, and vyp
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Fig. 4.6: Spherical plots illustrating the influence of the elastic constants in three parameter cross-anisotropic material
on the dimensional distribution of stiffness: a) isotropic state, b) change of the modified Young’s modulus E*, ¢) change

of the modified Poisson’s ratio v*, d) change of the anisotropy coefficient «

It is unwise to treat parameters E* and v* as isotropic, and then implement anisotropy
with the use of « coefficient. If the value of « is different than 1.0, only Young’s modulus
E, and Poisson’s ratio vy, stay constant. The overall soil stiffness is different, as the values
of the remaining cross-anisotropic parameters Ej, G,, and v,, change in accordance to Eq.
(4.12-4.14). This is shown in Fig. 4.6. The sphere, obtained in Fig. 4.6b, is enlarged in a
constant manner in every direction, as compared to the isotropic case. Since the anisotropy
factor a = 1.0, the Graham-Houlsby material model assumes the Hooke’s law isotropic stiffness
properties. The modified Poisson’s ratio v* corresponds to vy, so again there is no influence
of this parameter on the dimensional distribution function ¢~'¢. In Fig. 4.6d the impact of the
anisotropy coefficient is shown, for the cases of a = 0.7, @ = 1.0 and o = 1.5. The stiffness

distribution in vertical direction remains the same for each example, however stiffness changes
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notably in horizonal direction. If o < 1.0, then E, > Fj, hence the volume of the sphere

decreases along the plane of isotropy. The situation is reversed when o > 1.0.

4.1.2 Nonlinear models

Models described in Chapter 2 are sensitive to stress changes but are isotropic in their nature.
The most straightforward way of obtaining a model that is both nonlinear and anisotropic
would be the implementation of inherent anisotropy into a nonlinear isotropic formulation.

A microstructure of a cross-anisotropic material can be defined by the second-order tensor
M, obtained from the dyadic product [24]:

M:V®V or Mi‘:Ui(X)Uj. (416)

A plane of isotropy is defined with the use of the unit vector v. This vector determines the
symmetry axis of a cross-anisotropic material.

The general approach that introduces microstructure tensor into a nonlinear formulation
was proposed in [23, 24]. It operates based on the theory of tensor functions. If a scalar is a
function of two symmetric tensors, then it can be described as a function of three different
types of scalar invariants. Hence, for any function f(o, M), these are the invariants of stress,

microstructure and mixed stress-microstructure, respectively:

tro, tro?, tro’, (4.17)
tr M, tr M?, tr M?, (4.18)
tr (o - M), tr(a?-M), tr (o - M?), tr(o? - M?). (4.19)

Assuming a cross-anisotropic material, all microstructure invariants (Eq. 4.18) are the same
M = M? = M?. In order to incorporate the influence of microstructure into this function, joint
invariants of stress and microstructure tr (o - M) and tr (o2 - M) are sufficient.

A general form of a elastic potential that includes stress and microstructure tensors can be

expressed as follows:

W(o,M) = W([&itr o + &tr (o - M), [&tro? + &tr (o - M), tro?), (4.20)

where ¢; are scalar multipliers. The symbol () denotes functions of mixed stress-microstructure
invariants.

In literature one can find various material models capable of simulating anisotropic stiffness,
e.g. [4, 16, 55]. A general method showing the implementation of inherent anisotropy into

hyperelasticity has been presented in [74] and later validated in [8].
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4.1.3 Stiffness scaling

A quite interesting method of introducing inherent cross-anisotropy into arbitrary isotropic
model is proposed by Niemunis and Staszewska [121]. In this approach, cross-anisotropic char-
acteristics of soil microstructure is superimposed on isotropic elastic stiffness tensor D*° by
special scaling method. Stiffness tensor D*# including inherent cross-anisotropic component is

obtained from the following operation:
D** = QT . D™ : Q, (4.21)

where Q is anisotropy tensor used to scale isotropic stiffness tensor D™°. Anisotropy tensor
Q is obtained based on soil sedimentation direction m = [0,0,1] and additional constants
which relate to the coefficients of cross-anisotropy. Components of Q tensor do not depend
on strain, stress or isotropic material parameters. Hence, it represents a pure cross-anisotropic
characteristics.

Three types of cross-anisotropic scaling of isotropic stiffness tensor are described, denoted as
x A1, xA2, xA3. The first is delivering the cross-anisotropic stiffness as in the Graham-Houlsby
model [58]. The third is just to show impossibility of obtaining three independent coefficient of
cross-anisotropy via proposed scaling. However, the second one (xA2) is interesting and worth

of application. The scaling of x A2 is proposed with two anisotropy constants a = ag and 3:

lesTSIEeY

a=oag=ai=ao’, (4.22)

meaning the  parameter is referred to anisotropic exponents [108] as follows:

TGE = g and xg, = . (4.23)

If B = 1.0, then the obtained expression reduces to xA1l scaling corresponding to Graham-
Houlsby model [58].
The x A2 anisotropy tensor Q is defined as:

Qz‘jkl = Wik g1 + CIijlk and Hij = aéij + bMZ] (424)

The functions a, b, ¢ depend on the cross-anisotropic parameters ag and 3, while the mi-
crostructure tensor M;; is obtained from the dyadic product (see Eq. 4.16). Consequently, the
anisotropy tensor Q can be expressed as a function Q(ag, 3, M). The value of parameter [
have been estimated, taking into account recent literature evidence [108]. In particular, for stiff

clays, parameter [ tends to remain constant, with x¢g ~ 0.8 leading to g ~ 1.6.
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The main advantage of the stiffness scaling method is that the pure cross-anisotropy in a form
of xA2 can be applied to any stiffness or compliance matrix without violating thermodynamic
laws. Hence, it is easy to implement it into any existing constitutive models. For example, the
Hardening Soil model, refined with the Brick-type stiffness degradation (HSBrick), has been
further extended to account for stiffness cross-anisotropy. A detailed parametric analysis and

validation of the model are provided in [45].

4.2 Shear strength anisotropy

The classification of the various anisotropic failure criteria was proposed in [50]. The described
models were divided into 3 groups: continuous, discontinuous and empirical. In the case of
empirical models, the parameters used in basic isotropic criteria, are described as a function of
the loading orientation, calibrated in a way that they fit the experimental data. They are not
formulated based on any physical or mathematical laws, hence it is not recommended to use
them.

For discontinuous weakness plane or critical plane models, a material is typically assumed
as isotropic at the micro scale, however, on macro level discontinuities, that develop in a body,
are also analysed. A failure can happen in the rock matrix, due to the generation of a possible
failure plane, or along the predetermined joints. As such two distinct criteria for the material
and the joints should be used. This approach is used in so-called Jointed-Rock Model that is
available in various commercial geotechnical computational programmes.

In the case of continuous models, strength anisotropy can be introduced into a material model
through the kinematic hardening. It allows to modify the shape, size and movement of the yield
surface, which is sensitive to the change of stress paths, as well as to the rotation of the principal
stresses. The examples of such models were developed at MIT for normally consolidated clays
and sands [130] and overconsolidated clays [167]. Overall, this type of method could be quite
complicated to formulate, as it operates strictly within the stress space and is depended on
multiple parameters, which are not easily tested in laboratory environment. In addition, these
models do not incorporate the influence of the anisotropic microstructure on strength.

The implementation of inherent anisotropy into a failure criterion may be conducted with
the use of mixed invariants method, described in Sec. 4.1.2. The anisotropic failure criterion
was proposed by Pietruszczak and Mréz [133, 134]. Here, the microstructure tensor a takes the
following form:

m (2)

aij - almij + azmij + agmg‘?), (425)
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(@ _ @)@

ij = € €
1,2,3. The description of the coordinate system is shown in Fig. 4.7. The loading orientation

where m are structure-oriented tensors defined at the respective directions a =

is determined by a unit vector 1, specified with the respect to the principal directions e(®:

Li

where L is a generalised loading vector:
Li = L1 + Loel® + Lyl (4.27)

The magnitudes of the individual traction moduli are defined as follows:

Li=\oh +0h+oh, Li=yoh+oh+ok, Ly=\oh+oh+oh  (428)
The failure criterion for anisotropic materials is formulated as:
F(o,a) =n=mno(1+ £2;;1;1;). (4.29)

The parameter n is a description of the three-dimensional directional distribution of a scalar.
In this case 19 is simply an isotropic value of 7. Tensor £2 defines the deviatoric part of the

microstructure tensor a:

0= (- %%ak’“). (4.30)

(1)

This tensor is symmetric and traceless, meaning (2, = 0. Given an isotropic material, the

tensor §2 = 0, so n = 1y = const. To describe an orthotropic fabric two distinct eigenvalues are
needed. However, for the case of cross-anisotropy only one scalar value is enough for the proper
material definition. Assuming a horizontal bedding plane distribution (x5 is vertical, 1 = z3

are horizontal), the tensor £2 takes the following form:

Fig. 4.7: Definition of principal axes and loading direction components, after [134, 95]
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Fo0 0
2y=1 0 02, 0 |. (4.31)
0o 0 =&

2

For such material the strength in the plane of isotropy is constant, hence (2; = (23. Since
1+ 25+ 23 =0 and 12 + 13 + 12 = 1, the failure criterion for a cross-anisotropic fabric can be
written as:

n =10 1+€”(1—31§) : (4.32)

In Fig. 4.8 the spherical plots of the directional distribution of a cross-anisotropic material
and the influence of {2, are shown. As previously mentioned, if the value of {2, = 0, then the soil
response is isotropic. However, as (2, increases, the anisotropic properties of the yield surface
get more prominent.

The undeniable advantage of this model is the fact that the directional distribution function

can be implemented in any model and individual parameters can be made direction-dependent.

For example, the influence of cross-anisotropic fabric on strength was introduced to the isotropic
Lade criterion [94, 95]:

) <h>m =10 [1+ 21(1 - 383)] , (4.33)

Q,=0.5 Q, =0.75

0.5

Fig. 4.8: Spherical plots illustrating the distribution of cross-anisotropic material. The shape of the spheres is depended

on the value of §2,. The bigger the value of (2, the larger the spacial variation form the isotropic state that is attained
when 2, =0
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where I I3 are the stress tensor invariants, p, denotes an atmospheric pressure expressed with
the same unit as the tensor invariant I; and exponent m depends on the type and the density
of a given soil.

Additionally, this approach can incorporated into a multi-laminate framework. In [135] the
tangent of the internal friction angle m = tan¢ and effective cohesion ¢ of Mohr-Coulomb

failure criterion were assumed anisotropic:
Flo)=17—mo—c=0, where m=mo(l+Q7L;) and c=co(l+ L), (4.34)

The scaling method, described in Sec. 4.1.3, can also be implemented into any isotropic yield

criterion F'(o) < 0, by incorporating scaling tensor Q into stress in a following way:
F(o)* = F(Qo). (4.35)

Fig. 4.9 illustrates the application of this method to the Matsuoka-Nakai yield surface [106],
defined in Eq. 5.72. Scaling is performed according to approach x Al, where:

Qijkt = fikitj,  and gy = Vad; + (1 — a) My;. (4.36)

Parameter « is defined in Eq. 4.22, based on the Graham-Houlsby model [58].
The isotropic surface (o = 1.0) is compared with two anisotropic cases (a« = 0.8 and a = 1.2).

For the anisotropic surfaces, the strength parameters are adjusted in such way that the response

B A
------ a=0.8 —01 1
— (y = .0
200 a=12 ]
100 B
a=10 | «a=08 | a=1.2
£ of — P AL 25 31 20
o ] XAl [kPa) 10 13 8
-100 B
—03 S ———— J— -0y |
-200 B
-300 1 1 1 1 1 I—
-300 -200 -100 0 100 200 300
[kPal

Fig. 4.9: The comparison between isotropic Matsuoka-Nakai yield surface [106] and two anisotropic surfaces obtained
with X A1 scaling procedure [121]. The strength parameters are adjusted such that the response under triaxial compression

remains unchanged. The approximated values of the scaled ¢ and ¢ parameters are provided in the table



54 4 Constitutive modelling of anisotropy

under triaxial compression remains unchanged. The corresponding modified values are provided
in Fig. 4.9.
Unlike stiffness anisotropy, the strength in horizontal direction gets higher along with the

decreasing value of the o parameter.
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Anisotropic hyperelastic-plastic model for stiff

soils

In this section the anisotropic hyperelastic-plastic (A HEBrick) constitutive model is described.
It was first introduced in [44] and has since been the subject of detailed analysis, refinement,
and validation, e.g. [46, 47, 101]. The model accounts for both inherent and stress-induced
anisotropy of stiffness, as well as barotropy. It can also properly model stiffness changes due to
stress history. Currently, only stiffness anisotropy has been implemented. However, the attempts
are made to introduce strength anisotropy with the use of scaling method, presented in [121].

The model description is divided into three sections depending on the strain range. Stiffness
anisotropy is introduced within the elastic part. It is then propagated to the intermediate strain
range. Here, the procedure of stiffness degradation due to strain is described. Lastly, the applied
shear strength criterion is presented. The model is implemented in the commercial FE code

[26]. Tts application is explained in a form of a simplified algorithm.

5.1 Small-strain range: hyperelastic part

In order to implement inherent cross-anisotropy of microstructure, the symmetry axis normal to
the plane of isotropy, defined by unit vector v, needs to be introduced. Its geometric description,
based on two spherical coordinates 6 and ¢, is shown in Fig. 5.1. Depending on the definition

of the geometrical axes x;, the Cartesian coordinates of v are:
v = [sin @ sin ¢, cos #, sin 6 cos ], (5.1)

v = [sin 6 cos ¢, sin § sin ¢, cos 0] . (5.2)

In the commercial FE code [26], the vertical axis is defined as x5 in plane strain and axisym-
metric conditions and as x3 for the three dimensional case. Hence, the definition of second-order
microstructure tensors M, which components are calculated from the dyadic product (Eq. 4.16),

is as follows:
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Fig. 5.1: The position of the symmetry axis normal to the plane of isotropy, defined by the unit vector v, depending on

the geometric system z; and spherical coordinates ¢, 6

sinfsin?¢  cosfsinfsing cospsin?fsinp
M= | cosfsinfsingp cos? cosfcospsind |, (5.3)
cos psin?fsing cosfcospsinf  cos? psin?

cos? psin?f  cossin?@sing cosf cos psin

M = | cospsin?fsiny  sin?fsin’¢p  cosfsinfsiny |, (5.4)

cosfcospsinf  cosfsinfsinp cos? 6

where the respective unit vectors v are presented in Eqs. 5.1-5.2.
If the plane of isotropy is horizontally oriented, the unit vector v is in vertical direction
(0 = 0°), which leads to:
v =10,1,0", v=10,0,1]7, (5.5)

and corresponding microstructure tensors M:

00 0 00 0
M=|010|,M=|0 0 0]-. (5.6)
00 0 00 1

The base for the anisotropic hyperelastic kernel is the isotropic model proposed by Vermeer

[163], see Eq. 2.14. Tt is a function of one stress invariant (). As described in Sec. 4.2, in
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order to incorporate inherent anisotropy into hyperelastic potential, joint invariant of stress

and microstructure can be used [23, 24]:
1, 1
QM(O',M) = §t1' (0’ : M) = 5 abObcOcq - (57)

Hence, analogously to Eq. 4.20, mixed invariant @ is obtained based on @ and Qy:

Mab

_ 1 1
Q(U; M) = ClQ + CQQM = 5 (Cléij + CQMab) ObcOca = §mababcaca‘ (58>

Parameters ¢; and ¢, are the new material constants. Their influence is described in depth later
in this chapter.

To acquire the modified hyperelastic potential, that is able to simulate both stress-induced
and inherent anisotropy, the stress invariant @ is simply replaced by the mixed expression Q:

148

1-8 B -
(o, M) = w;ﬁ’gm (;Q(U,M)> | (5.9)

=

By calculating the patrial derivative of the mixed stress-microstructure invariant Q:

IQ(e,M) 1
Jo; B §<Uajmai + ovinm), (5.10)

secant stress-strain relation is obtained:

oW (o, M) 1
e _ V) 2 (60 im + opms), 5.11
€ Do e (OajMai + Tbimg) ( )

where

(5.12)

QM)
Dref '

Gy = Ggef (
Finally, the second stress derivative of the modified hyperelastic potential W (o, M) gives

the following tangent compliance tensor C":

PW(e,M) 1
80@'80}[ N 4@0

t
Cijm =

Akl (5.13)

for which

A = (B B = (1 ) ek LTI O (5 1

and
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(Mugibjp + mygdy) ™™ = i(mkiéjl + myidjx + My + myidik). (5.15)

For the detailed description of all operations conducted in order to calculate tangent com-
pliance matrix from the hyperelastic potential, see Appendix A.1.

In numerical implementation tangent stiffness matrix D' is needed. Hence, the tangent
stiffness matrix is obtained by analytical or numerical inversion of the tangent compliance C*,
transformed from 4-th order tensor to the Voigt notation [117].

The basic set of the model input stiffness parameters are: Gif, ¢1, ¢z, 8 and pyer. The level
of the barotropy and stress-induced anisotropy of soil is controlled by the constant ¢;. The
influence of the ¢; parameter on the stress-stiffness relation is conduced as a proportional
stiffness scaling. It has been tested that the impact of ¢; on the stiffness directional dependency
is negligible and its magnitude is mostly dependent on the parameter cy. It is shown in Fig.
5.2 as an elastic distribution of the potential W (o, M). In order to test the pure influence of ¢;
on stiffness, the condition ¢y = 0 is assumed. Isolines represent the same value of the potential
W(o,M) and are strictly related to the stiffness directional distribution. If the isolines form
circles and the stress distances between the subsequent isolines are the same in every direction,
then the material is isotropic. As it can be noticed, the change of ¢; value is responsible for
the intensity of barotropy but does not induce any anisotropic response in a soil. Hence, due to
the simplicity, the constant value ¢; = 1.0 has been established, so it has no influence on the
stiffness anisotropy.

The parameter ¢ is responsible for the introduction of the stiffness inherent cross-anisotropy.

Given ¢; = 1.0, if ¢co > 0, then the stiffness distribution is higher in the direction defined by the

¢ =0.5 (2 =0.0) ¢ =1.0 (g =0.0) ¢ = 1.5 (2 =0.0)

100[0.05

20 0 60 80 16076 20 20 60 80 16}) 76 20 20 60 80 16}3
—V20), [kPal —V20), [kPal —V207, [kPal

of

Fig. 5.2: Isolines of the constant values of the potential function W (o, M) in the triaxial plane related to c; parameter.

Negligible influence on stiffness anisotropy has been noted
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Fig. 5.3: Elastic strain distribution of Eq. 5.11 in triaxial stress plane. The influence of c2 is manifested as the stress
distance of the ||0W /da || isolines along the vector streams directions [0W /0oy, OW /07,

plane of isotropy and corresponds to the anisotropy coefficients in a following way: ag, ag > 1.0.
In case of the negative value of ¢y, the condition ag, arp < 1.0 is true. However, if ¢o = 0, then
the component of inherent anisotropy deactivates and the hyperelastic potential is regained in
its isotropic form in Eq. 2.14.

The influence of the parameter ¢y on the elastic strain distribution, defined in Eq. 5.11, is
presented in Fig. 5.3. Three different values of ¢y, corresponding to the conditions ag < 1.0,
ag = 1.0 and ag > 1.0, are considered. For all cases, ¢; = 1.0 and the reference shear modulus
G"! is kept constant. The distances between ||0W /da|| isolines correspond to the directional
stiffness. At the isotropic case, the isolines form uniform response. However, if the condition
co # 1.0 is considered, the span between the constant ||0W /0| values can be higher along
the vertical (¢ < 1.0) or horizontal (cy > 1.0) axis.

The parameter § controls the order of stiffness-stress dependency. It can be related to the
power law (Eq. 2.4) exponent m in a way that m = 1 — 3. At the same time this constant is
strictly dependent on the isotropic Poisson’s ratio (see Eq. 2.15).

Due to the direct coupling between m and v paramters, the application of the described
model is limited. Based on the Eq. 2.17, to avoid the infinite stiffness value, the following
condition 8 # 0 must be satisfied. However, if 5 # 0, then m # 1.0, meaning it is impossible
to introduce the linear relation between stress and stiffness, which is apparent in normally
consolidated clays. As such, the model is applicable for fine-grained overconsolidated clays and
granular soils, for which m is reported to be in the range of 0.3 — 0.7 [19].

In Fig. 5.4 the relation between the parameter 3, the power law exponent m and Poisson’s

ratio v is shown. For the marked range of analysed § and m constants, the limit values of
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Fig. 5.4: The coupling between parameter (3, the stress-stiffness dependency parameter m and isotropic Hooke’s law
Poisson’s ratio v: (a) the direct relationship between 8 and m, (b) the response envelopes of the isotropic Vermeer’s
model [163] for 8 = 0.3, 0.5, 0.7 and K = 0.5, 1.0, 2.0

Poisson’s ratio are v = 0.11 and v = 0.3. Considering the relation § = m = 0.5, the obtained
Poisson’s ratio is then v = 0.2. The response envelopes presented in Fig. 5.4b correspond to
the aforementioned values of the § parameter. The elongation of the obtained ellipses along
the K = const path strictly depends on (. It shows that this constant can also influence the
distribution of stiffness in a stress space.

The initial soil stiffness is determined with the reference shear modulus Gi. However, this
is an isotropic parameter. Given the material that is anisotropic in its nature, the proper
estimation of Gi! is very difficult. Hence, it would be most optimal to refer the aforementioned
set of elastic constants to the parameters that can be tested in laboratory, e.g. the basic cross-

anisotropic stiffness moduli: Gn, Gpn, E,, E) and Poisson’s ratios: vy, Vap.

5.1.1 Inherent anisotropy at isotropic stress state

The value of G&* is equal to G™! only if the considered material is isotropic (ag = 1.0). Oth-
erwise, the proper relation between model constants and stiffness parameters can be obtained

from the study of stress and strain increments related to the compliance tensor from Eq. 5.13:

Ae® = C'(o",\ M) : Ao (5.16)

Given the inherent inverse isotropy, the tests can only be conducted under isotropic stress

conditions. Additionally, in this analysis axis x5 is considered vertical, so:
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-po 0 O 0O 0 O
0'0 = 0 —Po 0 and M = 0 1 0
0 0 —po 0 0 0

To calculate shear moduli G, Gpn, the respective stress increment are needed:

0 Aoy, O 0 0 Aop
Ao =|Aoy, 0 0 |, dAo=| 0 0 0 1
0 0 0 AO’hh 0 0

whereas in terms of Young’s moduli F,, E} the following states are considered:

0 0 0 Ao, 00
Ao=| 0 Ao, 0 |, Ao=| 0 0 0
0 0 O 0 0 O

Based on Eq. 5.16, the cross-anisotropic parameters are obtained:

Aoyp ref (ﬁif Vet %02)1_6
Gy = =G

2Ag8, Y ¢+ 50 ’
—\ -8
Aghh ref (Ppof €1 + %02>
th — — GO re ,
2Ae9, 1
1-p
AUU cof (301 + CQ) (% c + %02)
B, = 2% oG ot ¥ ,
Aggz (Cl + 02)[026 + C1(2 + ﬁ)]
1-p8
Ao—h ref(3cl + 02) (p’%of\/cl + %CQ)
E, = —— = 2Gj L ,
Aety cifea +e1(2+ B)]
Voh

A, ef+al+8)
S —Acg, _ ci(l-=5)
"TAS T atal+ )
Next, the values of anisotropic coefficients aqg, ag, a, can be derived:

o= Bn _(ata)eb+alt b))
PTE T aletal@+p)
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(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)
(5.24)

(5.25)

(5.26)
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ag=—14 2 (5.27)

_ Unh _ o+ (24 P)
v Vyh 02+01(2+/6) )

The coefficient a¢ is only influenced by constants ¢; and c¢y. Since the condition ¢ = 1.0

(5.28)

has been adopted, then c; = 2(ag — 1). Following this relation and the assumption that the
samples are tested under the isotropic stress state py = prer, the Eqgs. 5.20-5.25 can be written

in a simplified form:

1-8
1+ 2(ag—1
Gt = fo’f( 3(a2 ) , (5.29)

1-8
2
Gief = Gt (\/1 + g(ozc; — 1)) , (5.30)

(1+206) (1 + 2(ac - 1)>1—/3

ref ref
B," =26 (2aq — D[(2ag —1)B+2] (5:31)
2 2o 1) "

Ept = ngef(lJr o) (2;:;)(;0 ) ’ (5.32)

_ 1-5
Uph = (20@ — 1)5 gt (5.33)

1 —

Vhh = 20&G_|_66 (534)

The values of Poisson’s ratios v, and v, are dependent on both ag and (5, which imposes
certain limits on their values, as presented in Fig. 5.5. In the case of v,;, the maximum value
that can be obtained, limited by the thermodynamic laws, is v,;, = 0.5, regardless of the applied
aq coefficient. However, considering the 5 values for overconsolidated soils, 5 = 0.3 — 0.7, the
extreme values of v, for isotropic material (ag = 1.0) are v, ~ 0.11 and v, ~ 0.3. Along
with the increasing ag, the possible values of v,;, decrease and, in the case ag = 2.0, are
Vo, = 0.07 and v,, =~ 0.24. Conversely, the highest v, values are obtained for ag = 0.7,
Vo =~ 0.13, v, =~ 0.33. Additionally, as «ag decreases, the relationship between v,, and [
becomes increasingly linear. For isotropic material, the same curve is obtained, v, = Vyp.
However, as aq increases, the maximum possible value of vy, decreases significantly, in this
case v, = 0.25. Conversely, for decreasing a¢, the minimum value of 5 parameter increases,
once vy, = 0.5 is reached. Similar to the Poisson’s ratio v,,, higher values of v, are obtained

as ag decreases. In this case, however, those differences are considerably more pronounced. For
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Fig. 5.5: The influence of cross-anisotropy coefficient a¢ and 8 parameter on Poisson’s ratios v, and vpp. The values

of B reported in overconsolidated stiff soils are marked

overconsolidated soils, the threshold values are v,;, ~ 0.06, v,, =~ 0.16 when ag = 2.0, and

Vo, = 0.14, v, =~ 0.41 when ag = 0.7.

ref

Based on Eqs. 5.29-5.32 , the reference shear modulus Gf,

B—1
Gy (G, aa, B) = Giac (\/@) : (5.35)
11200\
«
G (G, aa, B) = G, (W) : (5.36)

ps—1
cof / Tre ot — 20q (1 =2« 14 2«
Gy (B, aq, B) = E”f1+2a2 ( 5 “p— 1) (,/36') : (5.37)

can be calculated in the following

way:

B—1
(205G+6>< /1+2ag>
ref ref _ pref 3
GO (Eh ,Oéc;,ﬁ) - Eh 2(1 n QOZG) . (538)

Considering a soil sample tested in a triaxial apparatus, the cross-anisotropic moduli that are
especially feasible to be properly measured are: G™! and E'™. In this work, shear modulus in
vertical direction G is established as a default. Hence, the alternative set of model stiffness
constants are: G™5, ag, 8 and pres.

As such, the joint stress-microstructure invariant from Eq. 5.8, can be defined as:

Mab

_ 1 1
Q(o, M) = 5 10;; + 2(ag — 1) My 0pe0cq = §mab0bcaw (5.39)
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and by substituting Gif with the expression in Eq. 5.35, the updated hyperelastic potential is
obtained:

1-8
— B (pref\/% + OéG) — ES
W(o,M) = oG G 1 B) Qlo,M) 2. (5.40)

5.1.2 Mixed anisotropy at axisymmetric stress state

It is possible to expand the definitions of inherent cross-anisotropic stiffness parameters to take
asisymmetric stress state (K # 1.0) into consideration. By doing so, the actual influence of the
stress conditions on the soil stiffness can be demonstrated. The study of the material response
to stress increments shown in Egs. 5.18 and 5.19 is carried out analogously as in Eq. 5.16, based

on the following initial stress state:

3
- 1+pQOK 0 0
o’ = 0 - o |. (5.41)
3K
0 0 - 1+2pfo(

ref

The analysis conducted with the standard model parameter set: Gi™, c1, c2, B, K, po, Dret

returns the following stiffness parameters:

1—

B
o 2GE! ﬁ\/i%(cl +¢2 + 20, K?) (5.42
v e + e 142K ’ 42)
1-8
GBef ﬂ\/3(01 + co + 201K2)
Gpp = Pret , (5.43)
c1 142K
3o+ o+ 20 K2)\ :
E — 2Gref Pref Cl CQ Cl Cl + 62 + 2CIK (544)
v 0 142K (c1 + )21 K2+ (1 + ¢2)f)’
Po K2 1-8 2
Eh — 2Gref Dref \/3(01 + 02 + 261 ) Cl + 62 + 261K (545>
0 14+ 2K ala + e+ a K214 6)]
C1K(1 - 5)
wh = , 5.46
Vol 201K2 + (Cl + 02)6 ( )
K?*(B—1
Vhp = a (6 ) (547)

C1 + Co + 01K2(1 +6)
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The anisotropy coefficients that include stress conditions are defined as follows:

(01 + CQ)[261K2 + (Cl + Cg)ﬁ]
01[01 + Co + 01K2(1 + 6)]

ap = s (548)
K[2c,K? + (c; + ¢) ]
C1 + Co + 01K2(1 + ﬁ) ’

while the value of a remains the same as in Eq. 5.27. This shows the model’s key characteristic

(5.49)

o, =

that, under axisymmetric stress circumstances, ag remains constant and unaffected by the
degree of stress obliquity. As such, the conditions ¢; = 1.0 and ¢y = 2(ag — 1) are utilised in
the further calculations. The cross-anisotropic stiffness parameters, that are depended on ag,

are defined as:

Gon (5.50)

(67l 142K

1-8
Gy (pfzf\/6K2 + 6ag — 3)

1-8
n \/6K? T 6ag — 3
G = G2t (f’ref ¢ ) , (5.51)

142K
2 BRZt 6ag —3) 2K 4 200 — 1
E, =2Gy" | B , (5.52)
142K (2a¢ — 1)[2K2 + (2ag — 1)f]
0\ [ERT T 6ag -3\ | 2K?+ 20 — 1
E), = 2G5" | Bt : (5.53)
142K K2(1+B) +2a¢ — 1
K(1-p)
oh = , 54
YT 9K+ (206 — 1) (5:54)
K*(p—1
VUnh — (6 ) (555)

K21+ B)+2a0—1
Given the constants ag, 3, K, po, Pret, the reference shear modulus G5 can be related to

the cross-anisotropic stiffness moduli in a following way:

&V6K2 +60éG —

Bs—1
3
GBEf(Gfﬁi ag, 57 K; Do, pref) = aGGfﬁlf (pref 1 I 2K ) y (556)

(5.57)

-1
2o\ /6 K2 + 6 — 3
Gy (Gigh o, B, K. o pes) = G ( 142K ) |
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GBef(E'Ll;ef7 ag, 67 K7 p(bpref) -

B—1
_ et [ YORZ + 606 =3) 7 (206 — 1)[2K* + (206 — 1)) (5.58)
! 1+2K 2(2K2 + 2aq — 1) ’ '
Ggef(E;Lefv aqg, 57 Ka Do, pref) =
B5—1
et [ peVOB? +Gac = 3) 7 K2 (1 4 ) + 206 — 1 (5.59)
" 1+ 2K 202K +2ag — 1) '

In Fig. 5.6 the influence of mixed stiffness anisotropy on the soil response is shown, in a
form of orientation distribution function p=1¢ (Eq. 4.5). The parameters G5 and py are kept
constant. Their magnitude affects the size of the spheres and here are selected to fulfill the visual
purposes only. Three different values of anisotropy coefficient o and initial stress condition
Ky are considered. The effect of pure inherent anisotropy is presented for Ky = 1.0, whereas
the influence of independent stress-induced anisotropy is shown when ag = 1.0. It should be
highlighted, based on this study, that the stiffness distribution of soil appears to be primarily

influenced by the anisotropy coefficient a.

5.1.3 Anisotropy coefficients

Out of the analysed anisotropy coefficients of stiffness, the o parameter is the only constant
that is fully independent and its value is not influenced, in any way, by stress. The remaining
anisotropy coefficients ag and «,,, described in Eqs. 5.26, 5.28, can be defined as functions of

parameters ag and S:
(2ag —1)[(20¢ — 1) + 2]

agp(ag, B) = T : (5.60)
a,(ag, B) = (M;a_g 1+)%+ g (5.61)

Following these correlations, the values of the anisotropy exponents zgg and xq, are also
dependent on ag and . In Fig. 5.7, the relations described in Eqgs. 5.60 and 5.61, are presented
for three different § parameters, that correspond to the values reported for overconsolidated
clays. The model response is compared to the anisotropy exponents established in the model
proposed by Graham and Houlsby (zgr = 0.5, g, = 1.0) [58], as well as the value based
on the experimental data and suggested by Masin and Rott (zgg = 0.8) [108]. In case when
stiffness is greater in the vertical direction (ag = 0.7 — 1.0), the value of coefficient 8 has very

little effect on the obtained relationship ag(ag) and the model response especially correlates to
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Fig. 5.6: Spherical plots showing the influence of mixed anisotropy on the directional stiffness distribution in regard to
different values of ag = (0.8,1.0,2.0) and Ko = (0.5,1.0,2.0)

rar = 0.5. However, the typical values of anisotropy coefficient ag for overconsolidated clays,
reported in Tab. 3.1, are within the range of ag = 1.1 — 2.5. The response obtained for g = 0.5
seems to be the most optimal. In terms of «, (), the calculated results highly deviate from
the relation «, = ag. Subsequently, it is impossible to assess whether these functions correlate
with laboratory studies due to the extreme data scatter.

The relation between the § parameter and the anisotropy coefficients ag and «,, is shown

in Fig. 5.8. The changes of ar and «, are determined for three values of ag = 0.7,1.0,2.0.
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Fig. 5.7: The relations between anisotropy coefficients: ag(ag) and ay, (aq). The response obtained from the calculations
conducted with the hyperelastic model for 8 = 0.3, 0.5, 0.7. The results are compared to anisotropy exponents rgrg =
0.5,0.8 and zg, = 1.0

Since ag is the independent constant, it is plotted for comparison. If ag > 1.0, then the value
of coefficients ag and «, increases with 5. The opposite situation is true for ag < 1.0. In
addition, when comparing o with the other anisotropy coefficients, the following relationships
are observed: for ag > 1.0, the cross-anisotropy coefficient ag is higher than «, but its value
is lower than ag. In contrast, when ag < 1.0, the opposite trend is apparent: ag < a, and
ag > ag. This implies that for ag > 1.0, the value of anisotropy exponents are: rgg < 1.0 and
Tay > 1.0, whereas for ag < 1.0, these conditions are reversed: zqg > 1.0, g, < 1.0. However,
the moment the isotropic coefficient ag = 1.0 is introduced, ag and «, are also isotropic and
are no longer dependent on f3.

Defined in Eqgs. 5.48 and 5.49, anisotropic coefficients, that incorporate axisymmetric stress

state, can be rewritten so they depend on three parameters: ag, 5 and K:

(20 — 1)[2K? + (2a¢ — 1)5]
206 + K2(1+38)—1

aplag, 5, K) = (5.62)

2K+ K (206 — 1)8
a,(ag, B, K) = K201 5) 12061 (5.63)

In Fig. 5.9, the changes in the mixed anisotropy at axisymmetric stress states, based on the

stress condition K and ag ratio, are demonstrated using the broader definitions of anisotropy
coefficients provided in Egs. 5.62 and 5.63. The examples are considered for 5 = 0.5 and three

values of a¢. Given the isotropic stress state (K = 1.0), the parameters ag and «, exhibit
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Fig. 5.8: The influence of 8 on the value of the anisotropy coefficients ar and «, for three different cases of ag =

0.7, 1.0, 2.0

pure inherent anisotropic behaviour and the expressions from Eqs. 5.60 and 5.61 are regained.

Under anisotropic stress conditions (K # 1.0), the anisotropy ratios increase along with K.

4.0 — T

— 40 ————

3.0 -

Fig. 5.9: Anisotropy coefficients ag

K

and «, at various stress conditions K
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5.2 Intermediate strain range: stiffness degradation

The pre-failure stiffness degradation with strain is simulated, in six-dimensional strain space,
with the use of the Brick-type procedure, in depth described in Sec. 2.2.1. In the proposed
AHEBrick model, the relationship between stiffness modulus and strain is based on the S-
curve equation by Santos and Correia [142], see Eq.2.22. In the original expression, the decay
of the secant shear modulus G™ /G5! is determined. However, as numerical analysis is based

on incremental loading, the definition of the tangent shear modulus degradation is required:

Gief _ Yo.7 ? (5.64)
Gyt Yo.7 + %’Y . .

The relative strain distance of each stiffness drop - the string length s’ is measured with
the shear strain invariant v = 1/%6“6“. However, if a constitutive model is not limited by
any additional surfaces, i.e. cap yield surfaces, it is unwise to use shear strain invariant v as a
measure of strain. This especially is apparent during a triaxial compression test on an isotropic
sample (g = 1.0). In such case shear strain is not generated (v = 0), and consequently, no
stiffness degradation may occur, despite the increasing value of mean stress p.

In the original Brick formulation [149], the Euclidean norm ||€|| is defined in strain space
and its axes (ey and 7, in plane strain model, or ey and 7, in case of three-dimensional
formualtion) are specially selected in such a way that it is possible to define a realistic value of
Ky of a tested material. Additionally, the model is not constrained by any conventional yield
surfaces, so the selected norm allows to limit shear strength of soil.

Ultimately, in the AHEBrick model, the Euclidean norm of strain tensor |[e|| = ,/Z;;&;; has
been chosen as a strain distance measure between a person and bricks. It has been decided to use
this strain norm due to its straightforward definition, as compared to the original norm proposed
by Simpson. In addition, it accounts for stiffness degradation during isotropic compression, with
no need for cap surfaces. The relation between tangent shear modulus and the Euclidean norm

of strain tensor ||e|| is obtained by modifying Eq. 5.64:

Gt ( |l lsn )2
wof = : (5.65)
Ge" \llellsn + 3lel|

where ||e||sn is a parameter that determines the steepness and shape of S-curve.

The differences of stiffness changes due to applied strain measure can be presented in a form
of drained triaxial radial paths. This test allows the influence of the stress path direction on
soil stiffness to be examined. It involves performing stress probes, from a fixed initial stress
point, and measuring the obtained increments of deviatoric ¢, and volumetric ey strain. The

magnitude of the changes in stiffness can be then visualised using isolines of generalised strain:
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Fig. 5.10: Isolines of accumulated generalised strain e obtained from the simulation of drained triaxial radial stress
paths. The influence of strain measure on stiffness changes is presented for Euclidean norm of strain tensor ||e||, Simpson’s

Euclidean norm for the three-dimensional model ||essp||, and shear strain invariant

€ = /At + Ac2. (5.66)

This test was conducted experimentally for natural Pisa Clay and results were reported in [37].

The graphs, presented in Fig. 5.10, show the results of drained triaxial radial stress paths
simulation. The influence of the strain norm on the directional changes of stiffness is conduced
for Euclidean norm of strain tensor ||e||, Simpson’s Euclidean norm for the three-dimensional
model ||€|| = ||essp||, and shear strain invariant . The tested material is isotropic (g = 1.0)
and the input parameters are the same for the each example. The values of S-curve shape
parameters ||€||sn, V0.7 and ||€ssp||o.7 (defined analogously as in Egs. 5.64 and 5.65) are calibrated
in the way that, for the case of conventional drained triaxial compression test (CID), soil stiffness
degradation is comparable. The analysed material is tested at the initial isotropic stress state
po = 100kPa. The schematic diagram of stress path procedure is illustrated in Fig. 5.10. The
stress space is limited by the compression M, and extension M, shear failure lines and Rankine
criterion prevents tensile stress generation.

The results show the significant effect the selection of a strain measure has on changes in

soil stiffness of the samples, subjected to the same stress. It is particularly apparent when the
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Fig. 5.11: The stepwise description of the S-shaped curve equation proposed by Santos and Correia [142], after [46]

magnitude of stiffness degradation depends on the shear strain invariant v, especially consid-
ering the soil response to the drained stress path, inclined w = 0° to the p axis. In this case the
values of the load components are equal, 017 = 092 = 033 = const. Hence, the shearing of the
sample is minimal and, as a result, stiffness degrades accordingly, e.g. the generalised strain
e = 0.005 is obtained for the value of mean stress p ~ 400 kPa. In comparison, if stiffness decay
of a sample is dependent on strain norms ||e|| or ||esspl||, the same magnitude of the stiffness
change € = 0.005 is reached for the significantly lower stress level p ~ 200 kPa.

Based on the stiffness-strain relation in Eq. 5.65, the Brick-type stepwise degradation, applied
in the model, is presented in Fig. 5.11. The strain history is traced with Ny, = 10 bricks. Each

brick represents one step, which height, so-called stiffness proportion, has a constant value:

Gref o Gref.
Awg = —2——tmin 5.67
“ Ny, Gt (5.67)

To avoid a situation where shear modulus G**f degrades to zero, which is problematic in numeri-

ref
tmin

cal modeling, a minimum value of tangent shear modulus G is applied. This value is reached

when all the bricks are pulled. The value of G can be estimated based on the S-shaped curve
obtained from the laboratory testing. Otherwise, it can be assumed as 0.1 Gief.
The length of a string s’ for a j-th brick (j = 1,2,3...N},) is calculated from the following

expression:
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7 L
it -1 '
s = gllella <\/1_0 — jAwg + 0.5Awg ) .

If the model is implemented into a displacement-based FE software, e.g [26], then the value
of strain increment Ae is known in the stress integration procedure. During the initial step,
the location of a man € and bricks €™ is usually at the origin of a strain space (¢ = €™ = 0).

In every next iteration the following condition is reviewed, for each j-th brick:
& = ||le + Ae — || > &7, (5.69)

where d’ is the strain distance from the initial position. The moment the condition from Eq.
5.69 is fulfilled for a given j-th brick, this brick is assumed active. Its location is then updated
using the strain increment: ' '
Al — g
—
At the end of each step the number of active bricks n,;, is counted and the actual tangent

Ae® = (e + Ae — ™) (5.70)

shear modulus G can be calculated:
G = GI (1 — napAwg). (5.71)

Based on this value, it is possible to determine the components of the hyperelastic stiffness
matrix and, as result, obtain the stress increment Ao

Due to the Brick procedure the AHEBrick model poses the ability to accurately reflect the
influence of recent stress history on soil stiffness. Fig. 5.12 shows the results of a numerical
simulation presenting a simplified analysis of an experimental study performed on London Clay
[12, 141], described in Sec. 2.2. The sample loaded at the constant mean stress p = 200kPa
(0X) up to the failure is preceded by paths, which start in different stress points in p — ¢ space.
Four paths are taken into consideration:

e AO0X, starting at point pg = 250kPa, ¢y = 0kPa; ¢ = const unloading to p = 200 kPa; final
path 0X up to the failure,

e BOX, starting at point py = 200kPa, g9 = —50kPa; p = const loading to p = 200 kPa; final
path 0X up to the failure,

e (C0X, starting at point py = 150kPa, gy = 0kPa; ¢ = const loading to p = 200 kPa; final
path 0X up to the failure,

e DOX, starting at point pg = 200 kPa, ¢y = 50kPa; ¢ = const unloading to p = 200 kPa; final
path 0X up to the failure.

The analysed material is isotropic, ag = 1.0. Stiffness-strain relationship is defined as a change

of derivatives dg/de, with deviatoric strain e,. The presented S-curves are plotted for the last
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Fig. 5.12: The influence of the recent stress history on the stiffness degradation, presented as a relation between

derivatives dg/de, and deviatoric strain 4. Three strain measures ||e||, ||essp]|, 7 are considered

stage of tests, the 0X path. The simulation is conducted considering three strain measures: ||g||,
|lespl |, -

Overall, the results show the similar pattern as the experimental data presented in Fig.
2.8. Among the analysed strain norms, the closest match is observed for the Euclidean norm
of strain tensor ||e||. The highest initial stiffness is obtained from the DOX test. Soil stiffness
regains its maximum value due to unloading occurring before the final 0X path. The material
response to AOX and COX simulations is similar, as the preceding A0 and CO loading paths
are subjected to the same stress increment (¢ = const = 0kPa, Ap = 50kPa). In contrast, the
lowest stiffness is observed in the BOX test. Here, no change in stress direction or unloading

occurs, and as a result stiffness degrades significantly before the final 0X path is conducted.
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In the case of the other two strain measures, the most notable differences are observed for
the A0OX and COX tests. Using the Simpson’s Euclidean norm ||egspl|, the stiffness obtained
from the simulation of the COX path is comparable to BOX test. This suggests that the greatest
degradation occurs when the 0X path is preceded by compression loading. Conversely, when
stiffness degradation is controlled by the shear strain invariant 7, the stiffness calculated for
A0X and COX analyses is identical and significantly higher than for other strain norms. This
behaviour can be explained by the definition of the shear strain measure, where stiffness de-
grades with the accumulation of shear strains, which do not develop under isotropic conditions.
As a result, the observed soil response reflects the final stage of the test: loading at constant
stress p = 200 kPa.

5.3 Yield surface: isotropic strength criterion

Simpson’s original Brick model accurately reproduces shear strength; that is, the mobilized
friction angle cannot be greater than the maximum specified friction angle. The shear strength
in the suggested AHFEDBrick formulation is determined via the traditional stress-based isotropic
Matsuoka-Nakai criterion [106]:

9 —sin? ¢
F =Ll — ——— I3 < 72
MN(O') 142 —1—|—sin2¢ 3 <0, (5 )
where I, I5, I3 are the stress invariants:
1
L =0, L= 5 {O'ijo'ij - (11)2} , I3= det(a), (5-73>

and ¢ is the effective maximum friction angle.

To include the effective cohesion ¢ within the failure criterion, the stress invariants in Eq.
5.73 should be calculated for the stress state o — p.d, for which compressive stress is defined
as: p. = ccot ¢. Furthermore, the range of the permissible stress states is limited due to the
Rankine tension cut-off criterion p > pie.

In the flow rule, the Drucker-Prager function is applied as the plastic potential:

6 sin ¢

— 5.74
3— sinz/zp’ (5.74)

Gap(o) =q—

1 being the dilatancy angle.
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5.4 Implementation

In this section of the implementation of the A HEBrick model into a commercial displacement-
based FE software is presented. In Plaxis [26] environment, the described material model is
programmed as a special Fortran90 subroutine "User-Defined Soil Model" UDSM. The sub-
routine is compiled into the dynamic link library file (DLL) and added to the main program

directory. Within the program the following six tasks need to be performed:

Initialisation of state variables;
Calculation of constitutive stresses;
Return of the state variables;
Return of attributes matrix;

Creation of effective material stiffness matrix;

AR AN ol o

Creation of elastic material stiffness matrix.

The detailed description of every task can be found in Plaxis Material Models Manual [27].
As a simplification, in the numerical code, the tangent compliance and tangent stiffness
fourth order tensors (C', D") are reduced to 6 x 6 Voigt notation matrices ([Dt} , [CtD. This
operation can be conduced due to the symmetries of the fourth order tensors calculated from
the elastic potential function. The reduced compliance and stiffness matrices are obtained from

the stress and strain tensors defined in a simplified manner as 6 x 1 vectors:

{o} = {011 022 033 012 023 031}T and  {e} = {e11 €22 €33 712 723 731}T' (5.75)

In general, in UDSM models the user introduces the information about current stresses and
state variables, as well as the required model parameters. Provided input parameters of the
AHEBrick model are shown in Tab. 5.1 In the model the state variables array StVar contains
the information about the current position of a person € and bricks €™ which is determined
by 66 strain components. In the first step the StVar0 array only contains zeros. In every next
step it is automatically updated and the resulting state variables StVar calculated in a previous
step is transferred to the next one and used as the initial value StVarO.

In numerical calculations the current position of a person {e} and bricks {sbj } is determined
based on the strain increments, supplied by Plaxis. It should be noted that in the program’s
nomenclature, "increment" refers to the total added value within the current step. The infor-
mation about intermediate increments of each iteration is not stored in the memory. Since the
main program may typically produce large strain increments, it could generate the problem of

the nonlinear stiffness changes overshooting. Hence, it is crucial to incorporate a substepping
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Table 5.1: Input parameters of the AHEBrick model

No.|Parameter Description
1 | GF* [kPa) reference small-strain shear modulus
2 B [-] parameter controlling the order of barotropy
3 | pret [kPa] reference stress
4 e [] anisotropy constant - stress-induced anisotropy
5 cz [-] anisotropy constant - stress-induced and microstructure
anisotropy
6 ¢ [°] effective maximum friction angle
7 ¢ [kPa] effective cohesion
8 P [°] dilatancy angle
9 pee [kPa] maximum tensile stress
10 | GEet, [kPa] minimum reference tangent shear modulus
11| |lellsn [ parameter controlling the shape and steepness of the

S-curve

7

scheme into the algorithm. In the model the substepping is applied, if the strain increment of

the Euclidean norm ||Ae'!|| is greater than ||Agpay|| = 107°.

The simplified algorithm of the A HEBrick model numerical code implementation is presented

in Box 5.1. The stiffness matrix is obtained by the inversion of the compliance matrix [C|

[D]~". If the calculated stress increment (see point IV.) does not fulfill the shear strength

criterion, calculated in Eq. 5.72, then it is returned to the yield surface Fyn (o) = 0. For this,

the implicit return mapping algorithm, explained in [84], is used.
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Box 5.1. Algorithm presenting the implementation of the A HEBrick model in the commercial FE

code [26]
I {0}, {Ae®™'} and StVar0 are given
II. Calculation of the S-shaped curve parameters s/ and Awg, based on Eqs.
5.67-5.68
ITI. Calulation of the substepping scheme parameters:
1. Calculation of ||Ae®*||
2. Calculation of the substepping variable xngy,:
g = 155k, (| Aemad| = 107
3. IF: xngy > 1.0 THEN:
a) {Ae} = mlsub -{Ag'*}
b) nsup = FLOOR(Zngyp)
c) rest = 1.0 — fn—:ﬁ)
d) IF: rest > 0.0 THEN:
{A€ o5t} = rest - {Ae ™'}, ngap = Ngup + 1
IV. Calculation of the constitutive stress increments { Ao }:

1. Initial data: {Ac} =0, {aV} = {o0},i=1
2. DO:
a) {e} = {e"} + {4e}
b) Calculation of the actual tangent shear modulus G from the Eq.
5.71
c¢) Determination of the hyperelastic stiffness matrix [D¢(a?)] for the
actual G'*f and the remaining constant parameters c;, ca, 3, Pre
d) Calculation of stress predictor
[0t} = {09} + [D*(0?)] - {A¢)
e) IF: F({o¢}) > 0 THEN: return mapping algorithm; calculation of
{oi}, {40}
ELSE: {o0;} = {05}, {Ao;} = {AcS}
) {Ao} = {A0}+ {0}, {0%) = {o:}
IF: ¢ < ngu, THEN: ¢ =741
ELSE IF: i = ngy AND {Ag,ey} > 0 THEN:
{Ae} = {Agrest }, i =i+ 1
WHILE i < ngy,




6

Verification of the A HEBrick model in element

tests and exemplary BV problems

In the following chapter the model performance is investigated. At the most basic level it is
carried out as a laboratory test simulation on a single element. The element test analysis allows
to examine the model functionality and the influence of individual input parameters on the
material response, either in plane strain or in three-dimensional cases. Additionally, based on
the results of laboratory research, it is possible to perform non-standard parameters calibra-
tion, aiming to obtain performance of implemented material model close to the investigated
mechanical behaviour of soils.

Model response is also validated through FE numerical calculations of geotechnical boundary
value problems (BVP). The aim of BVPs is to investigate material parameter influence on
the soil-structure interaction, hence the homogeneous soil layout and basic flow conditions are
considered. The investigations are carried out for tunnel drilling, open excavation and supported
excavation cases. These examples are considered due to significant unloading occurring during
the construction and, as a result, stresses within subsoil undergoing substantial redistribution.
The directions of the principal stresses are subjected to large rotations, and the corresponding
principal stress components change considerably, which strongly affect stiffness of anisotropic
soils.

The numerical simulations are carried out with a use of own element test level programs,
written in Fortran 90 and Mathematica environments (element tests), and with commercial FE
[26] code in plane strain (element tests and BVPs) and 3D conditions (BVPs).

6.1 Element tests

The influence of selected material parameters on the soil response is examined using element

testing. This study involves the simulation of triaxial compression tests, under both drained
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and undrained conditions, as well as drained radial path tests. Furthermore, the influence of
stress history on the material behaviour is presented.

A soil sample with the predetermined set of material parameters listed in Tab. 6.1 was
used for the analysis. The values of the listed parameters are selected to be representative of
parameter values obtained for preconsolidated clays, (i.e. London Clay or Oxford Clay, see Sec.
6.1.4). The parametric study is conducted on the following parameters: ag, 3, ||€||sn and K.
Tab. 6.1 provides their range. It should be noted that each parameter is tested separately and
the remaining variables assume the default value marked as bolded. Any changes in this regard
are always indicated in the text.

The model validation is also conducted based on laboratory test results of some stiff over-

consolidated fine-grained soils, repotted in literature.

Table 6.1: Set of the AHEBrick model parameters used in element test simulations

Parameter Clay
G [kPa] 50000
. . B[] 0.4, 0.5, 0.6
Small strain stiffness
ac [ 0.7, 1.0, 2.0, 3.0
Dref [kPa} 100
. . Gf)e}ftmin [kPa‘] 5000
Stiffness degradation
ll€]|sn [-] 0.0005, 0.0007, 0.0009
¢[°] 27
o c [kPa] 10
Shear strength criterion S
v [°] 5
Dte [kPa] 0
Initial stress state Ko [-] 0.5 1.0, 2.0

6.1.1 Triaxial compression tests

The simulation of triaxial compression tests at the initial isotropic stress pg = prer = 100 kPa, is
conducted for undrained (CIU) and drained (CID) conditions. The influence of cross-anisotropy
coefficient v on material response is presented in Fig. 6.1. The top-left graph (Fig. 6.1a)
illustrates the influence of the stiffness anisotropy coefficient a on the initial inclination of the
undrained stress path in the p — ¢ plane.

For isotropic material (g = 1.0) the path is initially vertical. In contrast, the path is
inclined to the right for ag = 0.7 and to the left if g = 2.0. The material response for
ag > 1.0 correlates with the laboratory data on the overconsolidated stiff clays, presented in

Sec. 6.1.4. As the value of deviatoric stress ¢ increases, all paths begin to lean slightly to the
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right, which is related to the stress-induced anisotropy of soil stiffness but also, after reaching

shear strength criterion, to the dilatancy, which can be described with Skempton’s parameter

of pore pressure A [151]. Due to the initial inclination of the stress paths, the obtained shear

strength decreases proportionally with the ag value. Hence, it should be noted that both

stress-induced and inherent stiffness anisotropy of soil significantly influences shear strength of

a material in undrained conditions, which has important practical implications. The stress path

under drained conditions is also presented, as a comparison. In this case, stiffness anisotropy

does not affect the shear strength of the soil.

The influence of ag value on soil response is further evident for undrained compression

curves €, — ¢, presented in Fig. 6.1b. These curves are plotted alongside with the step-wise line
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Fig. 6.1: The influence of anisotropy coefficient ag on soil response subjected to the simulated triaxial CIU and CID

tests: a) stress paths in p — ¢ plane, b) undrained compression curves ¢, — g plotted with brick activation line &, — nap, )

activation of bricks &, —nap in drained conditions, d) drained compression curves €, — ¢. The minimum stiffness G,

corresponding to n,p = 10 is marked for each drained compression curve
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indicating the activation of bricks n,;, in the AHFEBrick model. In modelling, the undrained
compression is controlled with strains, so the activation of bricks remains unaffected by changes
n agq.

In contrast, drained compression is stress-controlled and the effect of a on stiffness degra-
dation is shown in Fig. 6.1c in a form of three separate €, — n,, curves. Notable differences can
be observed at higher strain levels, here for n,, = 8,9, 10.

Presented in Fig. 6.1d, axial stiffness of soil, in drained conditions, increases with the de-

ref

tmins corresponding to n,p = 10 is marked for each

creasing ag value. The minimum stiffness G

compression curve. This shows that as ag increases the activation of all bricks occurs quicker
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before the shear strength envelope is reached. In the case of ag = 1.0 and ag = 2.0 this is
manifested as a monotonically increasing straight up line until failure.

The same set of tests, presented in Fig. 6.2, was performed in order to study the effect of 5 on
an isotropic sample, ag = 1.0. The values of 5 = 0.4,0.5,0.6, covered by the study, have been
reported to occur for overconsolidated clays [19]. The effect of 5 on undrained stress paths, in
p — q plane, is presented in Fig. 6.2a. This parameter controls the order of dependency of stress
on stiffness, so the differences in material response become more noticeable as the deviatoric
stress level ¢ increases. Taking into consideration the expression m = 1 — 3, the lower [ value
is, the greater influence of stress on soil stiffness is obtained, which in turn leads to higher mean
stress p.

Additionally, the § parameter affects the shear strength of the material under undrained

conditions, as presented in a form of compression curves €, — ¢, in Fig. 6.2b. The initial inclina-
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Fig. 6.3: The influence of the shape parameter ||e||sn on soil response subjected to the simulated a) undrained and b)
drained triaxial compression tests. Brick activation curves €, — nap and compression curves €, — ¢ are presented. The

minimum stiffness G*Sf, ..., corresponding to n.p = 10 is marked for each compression curve
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tion of all three curves is the same, since according to Eq. 5.35, if material is isotropic(ag = 1.0)
the initial shear stiffness G%f is independent of (3. In addition this parameter does not affect
stiffness degradation, hence a single £, — ng;, line is plotted.

Figs. 6.2c and 6.2d show the material response to drained compression. Under these condi-
tions the [ parameter influences soil stiffness and its degradation but has no effect on shear
strength. Furthermore, similarly to aq, the higher the value of  is, the minimum stiffness,
which corresponds to the activation of all bricks n,, = 10 is reached at quicker rate.

The influence of the shape parameter ||e||s, on soil response is presented in Fig. 6.3. This
parameter determines the steepness of the strain-stiffness degradation curve, meaning it controls
the transition from high initial stiffness to nonlinear tangent stiffness changes up to the moment
the minimal stiffness becomes stress dependent and shear failure is reached. Along with the

increase of ||e||sn value, the rate of stiffness degradation decreases. However, this constant does

not affect the stress paths and, consequently, does not

influence the strength of the sample.

e =02277 T T T T T L L L B B
A 1 H v~ J
025
-0.001 — b -0.001 - b
2 2
r % P 1 - %y ” J
-0.002 - 2 4 -0.002 - & i
L ] | > |
s
-0.003 - -~ 0003 S 2, i
— I 2 1. F Sg |
1 2y 1
~20.004 ‘N + T10.004 - g
W | Q/ 1l w L 4
%
-0.005 - b -0.005 b
-0.006 B -0.006
| ——ag =07 | | B=04 |
-0.007 | ae = ;8 4 0007} — é - 82 i
F aG =2 L ac=1.0 =Y
0008L— 1 1w 0008L— 1 1w
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
—&y = —en[] —&y = —€x [-]
0 L R B B B L L 7y
L™ — J
00011 I T3 (o1
H BN J
-0.002 - 02 i q o =0y
-0.003 - i
S0 .
—_ i V=2 2ccos ¢ — (o2 + 03) sin g
—.-0.004 - =
6 r 4
-0.005 |- 4 . —ex
L i v
-0.006 i
——|lel]sn = 0.0005 /&sm "
I 1 arctan(1l —= 2v,, arctan —
.0.007 - — |lel|sn = 0.0007 | arctan( Vun) 1—sinvy
L ag=10 lle]]sn = 0.0009 | —ex
0008L— 1 1w

0

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

—&y = —€[]
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Hence only compression curves €, — ¢ and brick activation plots €, — n,, under undrained and
drained conditions are illustrated.

The influence of the parameters ag, 3, ||€||sn on the relationship between axial and volu-
metric strain (e, — ey) is illustrated in Fig. 6.4. This relationship, represented as an idealised,
theoretical bilinear response of soil to drained compression, allows the determination of Pois-
son’s ratio v,;,. The first line corresponds to the elastic behaviour of the soil and its inclination is
dependent on Poisson’s ratio, as shown in Fig. 6.4. The second segment represents the post-yield
plastic behaviour, with its slope determined by the dilatancy angle [164].

In the obtained results the relation between axial and volumetric strain is nonlinear, due to
stiffness barotropy. Therefore, the values of Poisson’s ratio must be determined based on the
initial inclination of the plotted curves. The presented values of v, correspond to the definition
provided in Eq. 5.33. Poisson’s ratio v, is inversely proportional to the applied values of ag
and (3. Conversely, the parameter ||||s, does not affect the elastic constants, therefore, the

obtained value v,;, = 0.2 is determined by the assumed values of ag = 1.0 and 5 = 0.5.

6.1.2 Radial stress path tests

The influence of the initial inherent cross-anisotropy ag and the initial stress state Ky on
stiffness is studied through triaxial radial tests in drained conditions. Stiffness changes are
presented in a form of isolines of accumulated generalised strain € (Eq. 5.66). The procedure of
the test is analogous to that described in Sec. 5.2.

The effect of ag on stiffness changes is shown in Fig. 6.5. Radial drained paths start at
the isotropic stress point p = 100kPa. Three values of the cross-anisotropic coefficient ag =
0.7,1.0,2.0 are taken into consideration. In the case of the isotropic material (ag = 1.0), the
soil response is generally uniform, with the greatest changes in stiffness being noticeable when
the sample is subjected to significant isotropic loading. In contrast, for anisotropic samples,
considerable influence of ag on soil stiffness is visible. In the case of ag = 0.7, where the
stiffness is greater in the vertical direction, the smallest change in strain is observed for the path
inclined w = 60° to the p axis. This path almost reflects the conditions of triaxial compression,
where the highest axial stiffness is obtained when ag = 0.7 (see Fig. 6.1d). For ag = 2.0, the
lowest strain generation is conducted for paths inclined w = —30°, —60° to the p axis, for which
horizontal stress predominates. For the path w = 60°, the obtained stiffness changes are the
largest as compared to other cases, ag = 0.7, 1.0.

The influence of stress-induced anisotropy on stiffness is presented in Fig. 6.6. The sample

is subjected to the initial isotropic (K, = 1.0), anisotropic active (K, = 0.5) and anisotropic
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Fig. 6.5: The influence of initial inherent stiffness cross-anisotropy ag on stiffness changes presented in a form of

accumulated generalised strain € obtained from the simulation of drained triaxial radial stress paths

passive (Ko = 2.0) stress conditions. It is apparent that the initial stress state affect the stiffness

changes as the obtained isolines patterns centre around the respective K lines.

6.1.3 Stress history tests

The influence of the recent stress history on stiffness degradation is presented in Fig. 6.7 for
different values of cross-anisotropy coefficient ag = 0.7,1.0,2.0. The obtained S-curves present
the soil response to the last 0X path. Stiffness is described in a form of the derivative dg/de,,
which decays with deviatoric strain €,. The analysis includes a simulation of four different stress
paths, which are presented in Fig. 6.7. The exact course of each path is described in Sec. 5.2.
The influence of cross-anisotropy coefficient ag on stiffness degradation induced by recent
stress history is evident. The stiffness calculated for the DOX path is the highest in all cases due
to unloading occurring before the final 0X loading. However, the soil response to the remaining
tests is highly dependent on ag. In the case of the isotropic material, ag = 1.0, stiffness
degradation curves obtained from AOX and CO0X simulations are similar, as the path 0X is
preceded by isotropic loading of the same stress increment Ap = 50kPa. Since no direction

changes occur in the stress space, the lowest value of stiffness is obtained for the BOX analysis.
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Fig. 6.6: The influence of initial stress conditions Ky on stiffness changes presented in a form of accumulated generalised

strain e obtained from the simulation of drained triaxial radial stress paths

For ag = 2.0, the value of stiffness obtained for the A0X test is much higher, as compared
to the isotropic case. Moreover, the stiffness degradation calculated from the COX and B0OX
analyses is analogous and significantly lower than for the AOX and D0X. This behaviour suggest
that, in the case of high horizontal stiffness, greater stiffness degradation is obtained when the
sample is subjected to the compressive loading prior to the final shearing.

When the sample exhibits greater vertical stiffness, ag = 0.7, this pattern is completely
different. The soil response to the COX test is much greater than in other cases and is comparable
to the DOX simulation. The lowest stiffness is obtained for the AOX path, with slightly higher
values calculated from the BOX test. This behaviour can be explained by the shape of the
isolines of accumulated generalised stain € in Fig. 6.5. For a small compressive isotropic stress
increment Ap, changes in stiffness are insignificant, but with isotropic unloading, strain is
generated rapidly.

The influence of ag is also notable in the shape of the calculated S-curves. The degradation
of isotropic material occurs evenly - there is no increase in stiffness just before the stepwise
degradation, as in the case of ag = 2.0. In contrast, for ag = 0.7, this trend is reversed - the

stiffness degrades continuously up to the drop. The highest stiffness values for all paths are
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are considered

obtained when ag = 0.7, and the lowest when ag = 2.0. However, the stiffness of the isotropic

sample is approximately the same as that for ag = 2.0.

6.1.4 Validation of the model with some laboratory test results

Model validation is additionally carried out through non-standard parameter calibration. It is
performed by simulating laboratory tests on singular material element and then adjusting the
soil response so it corresponds to the measured results. Adopted parameter values of a tested
soil are given in the corresponding figure. Presented in Fig. 6.8, calibration performed for two

London Clay units, B2 and A3, is based on the laboratory test results presented in [67]. By
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Fig. 6.8: Calibrations of the AHEBrick model stiffness and strength parameters for two units of London Clay: a) unit

B2, b) unit A3. The obtained calculations are compared to the undrained triaxial compression test results [67]

matching the S-shaped curves, defining degradation of the secant undrained Young’s modulus
E3, with vertical strain €, it is possible to obtain the values of the following stiffness parameters:
G, Dret, ||€]|sn, GTSL 1. Anisotropy parameters ag, 3 and shear strength constants c, ¢, 1 are
determined through simulation of undrained stress path in p — ¢ plane. The overall results
obtained from numerical simulations show a very good agreement to the laboratory data. The
calculated value of the inherent cross-anisotropy coefficient ag = 2.0 is consistent with the
values of ag presented in Tab. 3.1. Furthermore, according to [67], the average value of ag,
obtained from laboratory tests is considered to be ag = 2.0.

The results of analysis conducted on Vallerrica Clay and Todi Clay are shown in Fig. 6.9.

Both soils were tested as part of the same research project, described in [36]. Undrained com-
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Fig. 6.9: Calibrations of the AHEBrick model stiffness and strength parameters compared to the undrained triaxial
compression test results conducted on a) Vallerrica Clay, b) Todi Clay [36]

pression tests on Vallerrica Clay were carried out for three samples subjected to different initial
isotropic stress: pg = 58kPa, py = 200kPa, py = 428 kPa. Parametric calibration was per-
formed based on stress paths in p — ¢ plane and compression curves €, — ¢q. The adopted value
of ag = 1.4 gives satisfactory results, as the initial inclination of stress paths obtained from
the laboratory tests and the numerical simulations is consistent. Additionally, the initial stiff-
ness values are a very good match to the test data, in particular for samples consolidated to
po = 200kPa and py = 428 kPa stress conditions. In contrast, for larger strains the calculated

response deviate substantially from the measurements.
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The same set of laboratory tests was performed on Todi Clay. Tests were carried out for
initial stress conditions of py = 200kPa and py = 443 kPa. The simulated stress path curves
match the experimental results closely, indicating that the chosen anisotropy parameters a¢, 3
are appropriate. However, the stiffness values do not show the same level of agreement, as the

initial stiffness in the simulation is too high.

The influence of bedding plane orientation on material properties

Triaxial compression tests on anisotropic soils can be conducted on samples cut at different
orientations relative to the bedding plane. Typically, samples compressed in directions normal
(S-sample, 8 = 0°) and parallel (P-sample, # = 90°) to the plane of isotropy are examined. In
triaxial test simulations on a single element, only a S-sample can be modeled under axisym-
metric conditions, due to its uniform deformation, see Fig. 6.10. In contrast, simulating triaxial
compression on a P-sample results in a non-uniform radial strain generation. Such behaviour
can be only be modelled as element test assuming three-dimensional calculations on a regular
hexahedral element [45]. Samples cut at angles other than 6§ = 0° or § = 90° are referred to
as Z-samples, with 6 = 45° being the most commonly tested orientation. When testing such
samples, shearing and non-uniform deformation are already generated during isotropic con-
solidation. For this reason, mechanical properties of Z-samples cannot be determined through
element tests. Instead, they must be analysed by simulating the full triaxial compression test,
incorporating the appropriate geometry and boundary conditions [87].

The inclination angle of the plane of isotropy € has a significant impact on the response of
soil in undrained conditions. As shown in Fig. 6.10, the stress path for the S-sample is directed
maximally to the left, as the generation of water pressure in the pores during compression is

then the greatest. On the other hand, in the case of the P-sample, the pore water pressure is

S-sample TA S-sample "e‘\o“
P-sample &
—_— .\&e
— @
P-sample

Lo,V —
\% —
x1, h
) > P

Po

Fig. 6.10: Triaxial compression test conducted on samples cut at different angles relative to bedding plane orientation.
Deformation of S-sample is uniform, whereas in case of P-sample, the radial strain generation is influenced by ac
coefficient. Due to differences in pore pressure, the course of the obtained undrained stress paths and the resulting shear

strength is dependent on the bedding plane orientation [132, 169]
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Fig. 6.11: Calibrations of the A HEBrick model stiffness and strength parameters compared to the undrained compression
test results on London Clay: a) S-samples, b) P-samples [176]

the lowest, resulting in the path being directed maximally to the right. The orientation of the
stress paths obtained for intermediate inclinations is within the range defined by § = 0° and
6 = 90° [87, 168].

The following parametric calibration is based on the results of triaxial compression tests
conducted on S- and P-samples. The microstructure tensor M is defined according to Eq. 5.3,
however, in case of # = 0°, it simplifies to Ml = diag(0, 1,0). In Fig. 6.11 the stress paths in p—q
plane and compression curves ¢, — ¢ under undrained conditions are presented for London Clay
[176]. The samples were subjected to isotropic consolidation pg = 400 kPa and then compressed.
The calculated stress paths acquired for the adopted anisotropy and strength parameter values

show strong consistency with the stress paths obtained from laboratory tests on both S- and
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Fig. 6.12: Calibrations of the A HEBrick model stiffness and strength parameters compared to the undrained compression
test results on Oxford Clay: a) S-samples, b) P-samples [132]

P-samples. The calibrated stiffness parameters also match the test results closely, particularly
for the P-sample tests, where the measured and calculated compression curves nearly overlap.
Furthermore, the soil stiffness values and the cross-anisotropy coefficient ag = 2.0 correspond
well to those determined through the parameter calibration on London Clay shown in Fig. 6.8.

The simulations of triaxial compression tests on Oxford Clay samples, presented in Fig.
6.12, are compared to laboratory data obtained from [132]. Laboratory tests were conducted
on two S-samples and two P-samples, isotropically consolidated to pg = 100kPa. The best
agreement between the calculated and measured stress paths was obtained for parameters

ag = 2.3 and § = 0.55. Although the value of parameter ag = 2.3 is relatively high, similar
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to po = 2.0 MPa [87]

value has been reported in [29]. The initial inclination of the stress paths is consistent between
the tests and calculations, though the discrepancies become more pronounced along with the
increase of deviatoric stress ¢. In the case of compression curves obtained for the assumed
stiffness parameter values, the fit between the calculation and laboratory results is very good,
in particular for S-samples, where the soil behaviour is reproduced with high accuracy.

The laboratory tests, illustrated in Fig. 6.13, were performed on Opalinus Clay samples
consolidated isotropically to py = 4 MPa and py = 2 MPa [87]. The adopted strength parameters
¢ and c are quite high, but they correspond well to the values obtained from laboratory tests

reported in [168]. The initial inclination of the stress paths, resulting from ag = 1.77 and
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[ = 0.55, is consistent with the laboratory data, however, as the value of ¢ increases, the
calculated stress paths begin to deviate from the measurements. The remaining parameters
were determined on the basis of compression curves. The soil response for the defined values is
satisfactory compared to measured curves. Although the assumed value of the initial stiffness
G is generally high, it remains reasonable, as Opalinus Clay can be classified as both soil and

rock.

6.2 Exemplary geotechnical BVPs

In this section the influence of anisotropy on soil-structure interaction is examined by analysing
simple geotechnical boundary value problems. The influence of the soil response is investigated
for three values of the inherent anisotropy coefficient ag = 0.7,1.0,2.0 and three initial stress
states Ky = 0.5,1.0,2.0. The remaining model parameters are kept constant and are listed in
Tab. 6.2. The parameter values ag = 0.7 and Ky = 0.5 do not occur in stiff overconsolidated
soils. Nevertheless, they are included in this analysis in order to fully investigate the behaviour
of the model.

Table 6.2: Set of the AHEBrick model parameters used in the analysis of the exemplary boundary value problems

Parameter Clay
G=f [kPa) 50000
- 0.5
Small strain stiffness e
ac [+] 0.7, 1.0, 2.0, 3.0
Dref [kPa] 100
Gremin [KP 5000
Stiffness degradation vhumin [P
[le]]sh [-] 0.0007
¢[°] 27
o c [kPa] 10
Shear strength criterion S
¥ [°] 5
Dre [kPa] 0
N . v [kN/m?] 20.0
Unit weight and initial stress state
Ko [] 0.5, 1.0, 2.0

In order to examine the influence of pure inherent cross-anisotropy on deformation different
values of ag are considered at the isotropic stress state Kq = 1.0. In contrast, stiffness changes,
induced by the initial stress conditions K|, can be investigated considering isotropic microstruc-
ture ag = 1.0. Additionally, the AHFEBrick model is able to simulate pure stress-induced

anisotropy if soil microstructure and initial stress state are isotropic (ag = 1.0, Ky = 1.0). In
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order to isolate this effect, the comparison to the reference stress-dependent isotropic stiffness
is needed. It can be introduced via a hypoelastic law using Hooke’s linear elastic stiffness with
a fixed Poisson’s ratio v and a reference Young’s modulus E™' that increases with mean stress
(see Eq. 2.4). Stiffness parameters of hypoelastic isotropic kernel are selected so they correspond
to the anisotropic AHEBrick material, with isotropic microstructure ag = 1.0, shown in Tab.
6.2: ' = 120000kPa, v = 0.2, m = 0.5, pes = 100kPa, E* = 0.1 - E*f = 12000 kPa. In
some cases, mixed anisotropy (ag # 1.0, Ky # 1.0) is examined to check soil response to the
most complex conditions.

The findings of the following analyses have also been published in [46] and [101] for cases of

tunnel drilling and open-pit excavation.

6.2.1 Tunnel drilling

The influence of stiffness anisotropy on tunneling problems is considered in plane strain and
three dimensional conditions. In order to obtain the comparable soil response, the same geomet-
rical, material and flow properties are assumed for both cases. In the used FE code [26], mesh
regularisation cannot be performed. Therefore, to prevent mesh-dependent behaviour, a process
was used that involved first applying a fine regular mesh throughout the entire domain. Next,
the size of elements located furthest from the tunnel was increased until the results changed

significantly.
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Fig. 6.14: Geometry and FE mesh of two analysed tunnel cases in plane strain conditions: (a) deep tunnel: 1213 15-node

triangular elements, 9992 nodes, (b) shallow tunnel: 1162 15-node triangular elements, 9578 nodes
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Plane strain model

In plane strain conditions, a 5.0-m-diameter tunnel is modelled at two overburden depths: 16.0
m (deep tunnel) and 9.0 m (shallow tunnel). The geometry of analysed cases is presented in Fig.
6.14. Due to the symmetry, only one half of the problem, with the dimensions of 50.0 m x 31.0 m,
is considered. The behaviour of the primary 30.0 m thick clay layer is described with the
AHEBrick model. The material parameters are presented in Tab. 6.2. In order to avoid the
stiffness changes at the low stress level, a drained 1.0 m layer of granular fill at the surface
is modeled with a standard Mohr-Coulomb material (£ = 70000 kPa, v = 0.2, ¢ = 30°, ¢ =
3.0kPa, 1 = 0.0°, v = 18.0kN/m?). Around the tunnel face a 0.2 m thick concrete lining is
applied (plate elements, EA = 6-10°kN/m, ET = 20-10*kNm?/m, v = 0.2). The groundwater
table is located 1.0 m below the surface. No-flow boundary conditions are applied on the bottom
and sides of the FE domain and seepage is allowed along the tunnel liner.

The tunnel boring machine (TBM) excavation is simulated via the lining contraction method
available in the FE code [26]. In the first calculation phase, the soil and water within the

tunnel face are deactivated and the lining is installed by the activation of plate elements.
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Fig. 6.15: Deep tunnel; the influence of the inherent cross-anisotropy coefficient cvg on the settlement u, and horizontal
displacement component u, profiles along the selected cross-sections. The initial isotropic stress state Ko = 1.0 is

considered
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Fig. 6.16: Shallow tunnel; the influence of the inherent cross-anisotropy coefficient ae on the settlement u, and horizontal
displacement component u, profiles along the selected cross-sections. The initial isotropic stress state Ko = 1.0 is

considered

In the subsequent phase, the lining is uniformly contracted by 1.0 % to mimic tunneling-
induced deformation. The numerical simulations are carried out as a plastic calculation type
(undrained), for which consolidation and the effect of time are omitted.

The influence of pure initial inherent cross-anisotropy is examined for different values of
cross-anisotropy coefficient ag = 0.7,1.0,2.0, 3.0, at the isotropic stress state Ky = 1.0. The
obtained results are presented in a form of settlement troughs and horizontal displacement
profiles for the selected cross-sections. Fig. 6.15 illustrates the obtained deformation for the
case of the deep tunnel.

The influence of cross-anisotropy coefficient ag is obvious. As the value of ag increases,
the surface settlement troughs (y = —1.5m) become both deeper and steeper; the same trend
holds at y = —7.5m. However, directly above the tunnel lining (y = —16.0m) the inverse
behaviour can be observed - the lower the ag value is, the steepness and depth of the trough is
greater. Moreover, along the cross-section located directly below the tunnel (y = —21.0m), the
soil heave substantially increases for the low values of ag. Additionally, the deformation near
the tunnel gets noticeably irregular for large values of cross-anisotropy coefficients. In terms of

horizontal displacements a pattern is reversed - for the profile closer to the tunnel (x = 3.0m),
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Fig. 6.17: Deep tunnel contraction phase; maps of stiffness degradation for different values of ag at isotropic stress

state Ko = 1.0. The intensity of stiffness degradation is indicated by the number of active bricks nap

larger a value produces greater lateral movement, whereas farther out (x = 7.5m) smaller
horizontal deformations are obtained with the increase of ag. Fig. 6.16 shows the influence
of pure initial inherent cross-anisotropy on soli deformation induced by the shallow tunnel
drilling. The overall deformation patterns and their sensitivity to o mirror the results of the
deep tunnel analysis, however the settlement troughs are more extensive and less smooth. It is
due to the proximity of the tunnel crown to the ground surface which results in the appearance
of the localised shear zones.

The influence of pure cross-anisotropy on stiffness degradation is also apparent. The maps of
stiffness degradation, after the lining contraction calculation phase, are presented for deep and
shallow tunnel analyses in Figs. 6.17 and 6.18, respectively. Each color indicates the number of
active bricks n,;, that are being pulled, where dark blue means the maximum initial soil stiffness
G"¢, and red means that all 10 bricks are active and the stiffness has reached its minimum value
G In the case of a deep tunnel, the region where the minimum stiffness (n., = 10) is

vhtmin*

reached, changes its shape proportionally to the value of cross-anisotropy coefficient ag. When
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Fig. 6.18: Shallow tunnel contraction phase; maps of stiffness degradation for different values of ag at isotropic stress

state Ko = 1.0. The intensity of stiffness degradation is indicated by the number of active bricks nap

ag = 0.7, indicating higher stiffness in the vertical direction, this region stretches vertically.

For isotropic stiffness ag = 1.0, the region is uniformly distributed. When the horizontal

ref

Thtmin Decomes stretched

stiffness is higher (ag > 1.0), the area of minimum tangent stiffness G
horizontally around the tunnel. This correlation may be the cause of the change in the steepness
of the obtained settlement profiles. In addition, for high values of ag some zones of localised
unloading (n,, = 0) occurs, which could explain the irregular shape of settlement troughs in
the direct vicinity to the tunnel lining. The stiffness degradation maps, obtained for the shallow
tunnel calculations, are characterised by the presence of numerous localised unloading regions
that develop, not only in the immediate vicinity of the tunnel, but within whole FE domain.
Furthermore, for very high values of cross-anisotropy, ag = 3.0, under the tunnel lining, the
unloading occurs up to the bottom boundary of the model.

The influence of initial stress state Ky on the surface settlement profiles is illustrated for
the case of the deep tunnel in Fig. 6.19, and for the shallow tunnel example in Fig. 6.20. The

values Ky = 0.5,1.0,2.0 are analysed for different anisotropy coefficients ag = 0.7,1.0,2,0. In
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Fig. 6.19: Deep tunnel; the influence of the initial stress state Ko on the surface settlement u, profiles. Different values
of cross-anisotropic coefficient a are considered. The response of the model with purely isotropic hypoelastic stiffness
is shown for comparison (ag = 1.0)

all cases, the settlement troughs obtained for Ky = 0.5 show the highest depth and steepness,
with the maximum deformation occurring at Ky = 0.5 and ag = 2.0. Conversely, at Ky = 2.0,
the troughs arch upwards over the tunnel and heave above the original ground level can be
observed for ag = 0.7 in case of the deep tunnel, and for ag = 0.7, 1.0 for the shallow tunnel.

In order to determine the influence of pure stress-induced anisotropy, the comparison of
the results obtained from the calculations conducted for the fully isotropic hypoelastic kernel
and AHEBrick material, that exhibits pure stress-induced anisotropic behaviour (ag = 1.0),
has been conducted. Illustrated in Figs. 6.19 and 6.20 settlement profiles nearly overlap, which
means that the influence of stress-induced anisotropy on tunnel drilling deformation is negligible

and appears to have no practical importance.
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Fig. 6.20: Shallow tunnel; the influence of the initial stress state Ko on the surface settlement w, profiles. Different
values of cross-anisotropic coefficient ag are considered. The response of the model with purely isotropic hypoelastic

stiffness is shown for comparison (ag = 1.0)
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The effect of stress-induced anisotropy is also insignificant in terms of stiffness degradation,
shown in Fig. 6.21 (deep tunnel) and Fig. 6.22 (shallow tunnel). The maps obtained for the
isotropic hypoelastic kernel analysis are almost identical to that calculated with the AHEBrick
material model, for ag = 1.0 and Ky = 1.0. Slight differences are apparent in the case of
the shallow tunnel - here it can be seen that stress-induced anisotropy is responsible for the
appearance of localised shear zones. In general, the largest unloading occurs for Ky = 0.5, and
for the shallow tunnel analysis, the soil under the tunnel face achieves its maximum stiffness.

The deformation and bending moment distribution of the deep tunnel lining, subjected to
1% contraction, is presented in Fig. 6.23, for ag = 0.7,1.0,2.0,3.0 and Ky = 0.5,1.0,2.0. Under
the initial isotropic stress state (Ko = 1.0), the polar graphs of lining deformation and bending

moments are distributed horizontally, if ag < 1.0, and vertically for ag > 1.0. In case of

isotropic hypoelastic kernel Ky=1.0, ag=1.0

Nap = 0 = G = G

nap, = 10 = G = Gyt

tmin

Fig. 6.21: Deep tunnel contraction phase; maps of stiffness degradation for different values of initial stress state Ko and
inherent isotropic material ag = 1.0. The response of the model with purely isotropic hypoelastic stiffness is shown for

comparison. The intensity of stiffness degradation is indicated by the number of active bricks nap
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Fig. 6.22: Shallow tunnel contraction phase; maps of stiffness degradation for different values of initial stress state Ko
and inherent isotropic material g = 1.0. The response of the model with purely isotropic hypoelastic stiffness is shown

for comparison. The intensity of stiffness degradation is indicated by the number of active bricks napn

inherent isotropy (o = 1.0) the liner contracts uniformly and bending moments are negligible.
Given Ky = 0.5, the shape of all graphs is always vertical and this effect is magnified with
increase of ag. If initial stress is higher in horizontal direction (K, = 2.0), the deformation
and bending moment distribution is horizontal for ag < 1.0, however for high cross-anisotropy
coefficient ag = 2.0, the deflection is nearly isotropic and the obtained moments are very small.
The same analysis, conducted for the shallow tunnel is illustrated in Fig. 6.24. The obtained
response for Ky = 2.0 is nearly identical to the deep tunnel calculations. For Ky = 0.5, 1.0 the
lining deformation and bending moments are smaller and their shape is less pronounced. The
biggest differences are seen for Ky = 0.5 and ag = 0.7, as for this case almost no bending

moment occurs.
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Fig. 6.23: Deep tunnel lining subjected to 1% contraction; the influence of cross-anisotropy coefficient a¢ and initial
stress conditions Ko on total deformation ||u|| (left side of each graph) and bending moments M (right side of each
graph)

3D model

The influence of anisotropy on tunnel induced deformation is also tested for the 3D case.
The obtained results pose as a comparison to plane strain analysis. Moreover, the influence
of principal stress rotations on deformations at the tunnel face under varying inherent cross-
anisotropy coefficient ag is also examined.
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Fig. 6.24: Shallow tunnel lining subjected to 1% contraction; the influence of cross-anisotropy coefficient a and initial
stress conditions Ko on total deformation [|u|| (left side of each graph) and bending moments M (right side of each

graph)
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Fig. 6.25: Geometry and FE mesh of the exemplary single deep tunnel problem in 3D conditions, 42538 10-node
tetrahedral elements, 67659 nodes. Four lengths of tunnel segments are considered

The geometry of the 3D model, shown in Fig 6.25, is created by the extrusion of the plain
strain geometry 30 m along the tunnel axis, while maintaining comparable mesh density. The
deep tunnel analysis under initial isotropic stress conditions Ky = 1.0 and three values of
inherent cross-anisotropy coefficients ag = 0.7,1.0,2.0 is considered. The calculation phases
are analogous to the 2D simulations. The lining is modeled as a single segment of length 2 m,
6 m, 10 m, or 14 m (Fig. 6.25), which is then subjected to 1% tunnel contraction. In order to
support the tunnel face, distributed horizontal back pressure is applied. Its value increases with
along the tunnel depth - 170 kPa at the tunnel crown to 230 kPa at the bottom.

The deformation of the 3D numerical analysis is presented in Fig. 6.26 in a form of settle-
ment troughs and surface plots of the horizontal displacement for the selected cross-sectional
planes. The results obtained from 2D calculations, plotted as a dashed line, are shown for the
comparison. Just as in 2D model, the depth and the steepness of the settlement troughs is
influenced by the value of the cross-anisotropy coefficient a. Additionally, the depth of the
settlement increases along with the length of the tunnel segment, and for 14 m, the 3D and 2D
profiles nearly coincide. Horizontal deformation is shown for a cross-sectional plane located in
the tunnel vicinity (x = 3.0m). For ag = 0.7, 1.0 the magnitude of the horizontal displacements

is not influenced by the segment length, whereas when ag = 2.0 the deformation increases with
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Fig. 6.26: The influence of the inherent cross-anisotropy coefficient a. on the settlement u, and horizontal displacement
component u, surface plots in the selected cross-sectional planes obtained in 3D model. The initial isotropic stress state
Ko = 1.0 is considered. In each graph, the deformations are shown after 1.0% lining contraction of 2, 6, 10 and 14 m long
single tunnel sections. The results from plane strain analysis, plotted as a dashed line, are shown for the comparison
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the length of the tunnel. Just as for the settlement troughs, the 3D and 2D analysis are almost

the same for the longest segment.

6.2.2 Open-pit excavation

The geometry of the 10-m-depth open-pit excavation problem is presented in Fig. 6.27. The
model symmetry is considered, hence, only half of the excavation, with the dimensions of
50.0m x 20.0m, is analysed. The mechanical behaviour of a 20.0 m thick undrained stiff clay
layer is described with the AHEBrick model. The material parameters are presented in Tab.
6.2. To improve slope stability, the value of cohesion has been increased to ¢ = 20.0 kPa. The
groundwater level is set 1.0 m below the ground surface. The groundwater flow boundaries are
closed along the symmetry line and the bottom of the FE domain, while a constant water head
(-1.0 m) is imposed on the right boundary. Seepage is applied to the model surface and the
contour of the excavation.

The calculations are carried out in four phases of excavation and dewatering. The material
removal is simulated by deactivating the corresponding soil clusters and dewatering is achieved
by setting a new groundwater table at the level of the current excavation bottom, while it
stays constant on the right side of the domain (y = —1.0m). The first excavation is 1.0 m
deep, whereas the remaining 3 are 3.0 m deep each. The numerical calculations are conducted
as fully-coupled flow analysis. Considering low value of permeability coefficient, k, = k, =
1-107*m/day, and the duration of each phase (10 days), the simulation can be assumed as
undrained.

The influence of pure inherent cross-anisotropy on the soil deformation induced by open-pit
excavation is examined for different values of cross-anisotropy coefficients ag = 0.7,1.0,3.0
and isotropic stress conditions Ky = 1.0. In Fig. 6.28 the comparison of the ground movement
contours after the excavation is presented. As a reference, the deformed mesh of a isotropic case

(g = 1.0, Ky = 1.0) is considered. The more detailed material response is shown in Fig. 6.29
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20.0 10.0 20.0 geometry after 4 excavation phases & FE mesh
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Fig. 6.27: Geometry and FE mesh of the open-pit excavation problem: 2533 15-node triangular elements, 20503 nodes
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Fig. 6.28: The influence of inherent cross-anisotropy coefficient ag on soil deformation after 4 excavation phases. The

initial isotropic stress conditions Ko = 1.0 are considered

in a form of displacement profiles along the selected vertical (y = —0.05m, y = —5.0m, y =
—10.05m, y = —14.5m) and horizontal (z =5.0m, x = 12.5m, x = 20.0m, z = 30.0m) cross-
sections. The greatest surface settlement, bottom heave, and horizontal displacement of the
excavation slope occur in the case of inherent isotropy (ag = 1.0). The response obtained for
ag = 0.7 shows significant similarities to isotropic material. The application of high value of
cross-anistropy coefficient (ag = 3.0), however, results in the lowest values of settlement and
horizontal displacements. Additionally, for this case, a localised heave above the ordinal surface
level can be spotted at the right boundary of the FE domain. However, given the range of the
considered ag values, the overall differences of the obtained model behaviour remain relatively
small and seem to be insignificant from the practical point of view.

The maps of stiffness degradation, for the selected values of ag and Ky = 1.0, are presented
in Fig. 6.30. In all cases, the lowest stiffness can be observed in the vicinity of the excavation
bottom, especially in the area adjacent to the slope. In this region the biggest soil heave occurs.
The greatest material strain happens when ag = 1.0, while for ag = 3.0 soil unloading is the
most pronounced. Despite those differences, the maps are generally very similar to each other.
Hence, inherent cross-anisotropy primarily influences the magnitude of stiffness degradation
but does not significantly affect the ground response.

The same set of FE analyses is performed testing the change of the initial stress conditions K
of the inherent isotropic material, ag = 1.0. The soil deformation profiles are presented in Fig.
6.31 for Ky = 0.5,1.0,2.0. Again, the deformed mesh for the isotropic case (ag = 1.0, Ky =

1.0) is considered as a reference. The obtained excavation bottom heave is comparable for
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Fig. 6.29: The influence of inherent cross-anisotropy coefficient ag on displacement profiles for selected vertical and

horizontal cross-sections. The initial isotropic stress conditions K¢ = 1.0 are considered

all presented cases, though the magnitude of vertical displacement is marginally higher when
initial stress predominates in horizontal direction, Ky = 2.0, The slope heave is the greatest
for Kg = 0.5, 1.0, while the deeper surface settlement trough is generated when Ky = 2.0. The
influence of pure stress-induced anisotropy is tested by the introduction of the reference material
with isotropic hypoelastic stiffness, also illustrated in Fig. 6.31 as a ground deformation contour.
The obtained results strongly correlate with the isotropic case, which suggests that the effect of
stress-induced anisotropy to the open-pit excavation deformation is negligible. Therefore, shown
in Fig. 6.32, vertical and horizontal displacement profiles exclude the isotropic hypoelastic kernel
model. The material response at the cross-sections furthest from the excavation (x = 30.0 m and
y = —14.5m), show significant similarities across all three analysed examples. Additionally, the
magnitude of soil heave at the bottom of the excavation is comparable. Notable differences in
ground deformation mainly occur in the vicinity of the excavation slope. The largest horizontal
displacement is observed when Ky = 2.0. In the cross-section located at the midpoint of the

slope (z = 12.5m), the soil settlement is only apparent if the initial horizontal stress is higher.
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Fig. 6.30: Maps of stiffness degradation for different values cross-anisotropy coefficient aq at isotropic stress conditions
Ko = 1.0, obtained after the last excavation phase. The intensity of stiffness degradation is indicated by the number of

active bricks nap

Furthermore, heave at the excavation bottom near the slope is much smaller for K, = 2.0,
compared to the other two cases, which exhibit almost identical deformation.

Fig. 6.33 illustrates maps of stiffness degradation for the analysed values of Kj. To determine
the importance of the pure stress-induced anisotropy on stiffness changes, the response of the
isotropic hypoelastic model is shown, as a comparison. No notable differences are observed
between two isotropic cases, hence, the influence of stress-induced anisotropy is negligible.

Nevertheless, the effect of various K, states on stiffness degradation is evident. In all cases,

deformation (scaled up 500 times) _.© _ 40[x10%°m]
”d’ 30
/’/”
20
10
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ag=10  ------ Ky=0.5 =——— isotropic hypoelastic kernel
— Ky =10
""" Kn=2.0

Fig. 6.31: The influence of the initial stress state Ko on soil deformation after 4 excavation phases. The inherent isotropy
ag = 1.0 is considered. The response of the model with purely isotropic hypoelastic stiffness is shown for comparison
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Fig. 6.32: The influence of the initial stress state Ky on displacement profiles for selected vertical and horizontal

cross-sections. The inherent isotropy ag = 1.0 is considered

low stiffness value is obtained at the bottom of the excavation, and for Ky = 2.0, a localized
shear zone is clearly visible in this area. Along the excavation slope, a high value of stiffness
is observed for Ky = 0.5,1.0, whereas, if Ky = 2.0, a substantial stiffness degradation occurs.
This suggests that, if initial stress is higher in the horizontal direction (Ky = 2.0), the obtained

slope heave is caused by horizontal displacement, and otherwise it is a result of soil unloading.

6.2.3 Supported excavation

The simulation of the supported excavation problem is conducted in plane strain conditions.
The geometry and FE mesh are presented in Fig. 6.34. Due to the symmetry only a half of the
model is calculated. The FE domain measures 80.0 m x 40.0 m, while the excavated area has a
width of 15.0 m and a depth of 20.0 m. The excavation is supported by a 25.0-m-long and 1.0-
m-thick concrete diaphragm wall, modelled as a plate element: A = 30-10°kN/m, EI = 2.5-
10° kNm?/m, v = 0.2. Additionally, at the centre of each excavated cluster a wall support prop
is installed (anchor elements, Lgpacing = 3.0m, EA = 2.7- 10°kN). The mechanical properties of
the 39-m-thick clay layer are defined with the A HEBrick model and the corresponding material
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Fig. 6.33: Maps of stiffness degradation for different values of initial stress state Ky and inherent isotropic material
ag = 1.0, obtained after the last excavation phase. The response of the model with purely isotropic hypoelastic stiffness

is shown for comparison. The intensity of stiffness degradation is indicated by the number of active bricks nap

parameters are listed in Tab. 6.2. Analogous to the tunnelling problem simulation, a 1.0-m-thick
granular layer is placed above the clay to prevent stiffness variations caused by low stress levels
(material parameters are provided in Sec. 6.2.1). The groundwater table is located below the
granular fill (y = —1.0m). Flow boundaries are closed along the model’s axis of symmetry
and at the bottom, while the side and top boundaries are open. Seepage is allowed along the
diaphragm wall.

The calculations are performed as a fully-coupled flow deformation analysis. In the first
phase, the wall installation is simulated by activating the plate elements and enabling the
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Fig. 6.34: Geometry and FE mesh of the supported excavation problem: 1581 15-node triangular elements, 13128 nodes
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interfaces around it. In each subsequent phase, excavation is advanced by 5 m, followed by
dewatering and the activation of prop elements. Dewatering is modeled by interpolating the
pore water pressure between the initial groundwater level and the current excavation depth for
all excavated clusters. Due to the low permeability of the clay layer (k, = k, = 1107 m/day)
and the short duration of each calculation phase (first phase - 1 day, the remainder - 10 days
each), the analysis can be assumed as undrained.

The influence of pure initial inherent cross-anisotropy on soil deformation, induced by the
construction of a supported excavation, is examined for different values of cross-anisotropy
coefficient ag = 0.7,1.0,2.0 and the isotropic stress state Ky = 1.0. The obtained results are
presented in Fig. 6.35 in a form of settlement troughs and horizontal displacement profiles
for the selected cross-sections. In every case the value of vertical displacement is the highest
for the isotropic material, o = 1.0 and the shape of the settlement troughs is the steepest.
The difference in soil response between ag = 0.7 and ag = 2.0, obtained at cross-sections
located directly below the granular fill (y = —1.0m) and halfway down the diaphragm wall
(y = —10.0m), is negligible, suggesting that soil, which exhibits anisotropic stiffness produces
similar response, regardless the value of a. The calculated ground heave directly below the
excavation bottom (y = —20.5m) and beneath the wall (y = —25.0m), is the smallest for
ag = 0.7, however, the one for ag = 2.0 is comparable. Additionally, when ag # 1.0 the
resulting vertical displacement profiles within the excavation area are relatively flat. Horizontal
displacement is presented at sections located 5 m and 15 m (x = 20m, x = 30m) behind
the diaphragm wall, as well as at the center of the model (z = 40m). In each analysis, the
calculated displacement is the greatest for the isotropic case. The differences between ag = 0.7
and ag = 2.0 are minor, though the smallest horizontal displacement profiles are observed for
ag = 2.0, despite this case corresponding to the highest horizontal stiffness Gpy.

The influence of pure cross-anisotropy on stiffness degradation, presented in Fig. 6.36, is also
apparent. In all cases, the minimum stiffness (n,, = 10) is reached near the excavation basin.
For ag = 1.0, a substantial reduction in stiffness extends over a large portion of the model.
When ag = 0.7, the stiffness degradation at the excavation bottom is the smallest, however,
noticeable changes occur in soil located further away from the excavated zone. In contrast, if
ag = 2.0, the decrease in stiffness is largely confined to the excavation area. Additionally, when
ag # 1.0, no significant stiffness degradation near the ground surface occurs, which explains
the negligible differences in the calculated settlement troughs. From the obtained maps, it can
be concluded that for the example of supported excavation problem, the initial stiffness value,

determined by the coefficient a, does not strongly influence the overall soil response. Instead,
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Fig. 6.35: The influence of the inherent cross-anisotropy coefficient ag on the settlement u, and horizontal displacement
component u, profiles along the selected cross-sections, induced by the construction of the supported excavation. The

initial isotropic stress state Ko = 1.0 is considered
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Fig. 6.36: Maps of stiffness degradation for different values of ag at isotropic stress state Ko = 1.0 obtained for the
example of the supported excavation construction. The intensity of stiffness degradation is indicated by the number of

active bricks nap

the rate of strain development and the associated stiffness degradation, which is also dependent
on ag, seem to be more important.

The influence of the initial stress state Ky on the deformation caused by the construction
of a supported excavation was investigated for Ky = 0.5,1.0,2.0, assuming an isotropic mi-
crostructure, ag = 1.0. Similar to the example shown in Fig. 6.35, the vertical and horizontal
displacement profiles, presented in Fig. 6.37, are calculated for selected cross-sections. For cross-
sections located at depths y = —1.0m and y = —10.0m, the deepest and steepest settlement
troughs occur at Ky = 2.0, while the smallest deformation is observed for the isotropic case
(Ko = 1.0). At Ky = 0.5, the settlement trough exhibits a gentle slope from the right boundary,
however, at a distance of approximately 30 m from the diaphragm wall, a sharp, almost circu-
lar decrease in settlement occurs. Soil heave obtained at the excavation bottom (cross-sections
y = —20.5m and y = —25.0m), is roughly twice as large for Ky = 2.0 than for Ky = 0.5, 1.0,
which show very similar results. In case of horizontal displacement profiles, the largest deforma-
tion is again associated with Ky = 2.0. The ground movement for Ky = 0.5, 1.0, is comparable
down to about half the model depth. Below this depth, however, the displacement u, becomes
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isotropy ag = 1.0 is considered
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Fig. 6.38: Maps of stiffness degradation for different values of Ky and isotropic material ¢ = 1.0 obtained for the
example of the supported excavation construction. The intensity of stiffness degradation is indicated by the number of

active bricks nap

greater for Ky = 0.5, although these differences diminish with increasing distance from the
excavation.

The influence of pure stress-induced anisotropy is investigated by the comparison of the
isotropic A HEBrick material to the reference hypoelastic isotropic material. Soil response ob-
tained for hypoelastic model is smaller than for the case of ag = 1.0, Ky = 1.0. This suggests
that the importance of stress-induced anisotropy on soil deformation is substantial.

This effect is also evident in the stiffness degradation maps presented in Fig. 6.38. The
reduction in stiffness obtained with the hypoelastic model is considerably smaller than in the
case of isotropic A HEBrick material. In all analysed examples, the maximum stiffness decrease
occurs within the excavation area. However, if Ky = 2.0, a pronounced reduction in stiffness
extends beyond the excavation zone. For Ky = 0.5, a distinct shear zone develops, marking the
path of the slip zone, which may explain the abrupt settlement drop observed in Fig. 6.37.

The horizontal displacement u, and the bending moment M distribution in the diaphragm
wall are presented in Fig. 6.39 for combined cases of ag and K. For each value of Ky, an

additional curve is included to represent the behaviour of the hypoelastic model. In terms of
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horizontal displacement, the largest values consistently occur for ag = 1.0, while for ag # 1
the results are very similar to one another. Taking into consideration a comparison between
the soil response for the isotropic AHEBrick material (ag = 1.0) and that calculated with the
use of the hypoelastic model, it can be concluded that stress-induced anisotropy demonstrates
the greatest influence on soil behavior in supported excavation cases. Moreover, this influence
appears to increase with higher values of initial stress levels. Overall, the obtained wall deflection
is substantially higher when initial horizontal stress exceeds the vertical one. In contrast, no
notable differences can be distinguished between horizontal displacement profiles calculated at
Ko =0.5and Ky = 1.0.

In the case of bending moment distributions, a clear trend is observed: the extreme values
of moments corresponding to the same aq increase with higher Ky, with a particularly pro-
nounced rise at Ky = 2.0. Comparing responses obtained for isotropic materials, the influence
of stress-induced anisotropy becomes significant only under anisotropic initial stress conditions.
Conversely, for Ky = 1.0, the bending moments are similar in both shape and magnitude, which

indicates the influence of a is marginal.



7

Application of the A HFEBrick model in case

studies

In this section the AHEBrick model is validated against real geotechnical cases. The purpose
of such analysis is to verify the extent to which the adopted material model is able to reflect
reality. For this reason, the model geometry and construction procedure are closely based on
the data reported in literature. Additionally, values of material properties are obtained through
parameter calibration of laboratory test results. The results are then compared to corresponding
field measurements. That way the accuracy of the calculations can be determined.

The following analyses concern the cases of twin tunnel construction in London Clay [32, 33],
FE and HG-A tunnels in Opalinus Clay [43, 102, 115] and trial open-pit excavation in Oxford
Clay [70, 132].

7.1 Twin tunnels of the Jubilee Line Extension in
London Clay at St. James Park, London

Launched in 1994, the Jubilee Line Extension Project aimed to extend the underground line
by 15 km, from Green Park to the existing British Rail station at Stratford. This project pro-
vided an excellent opportunity to conduct a field study on the impact of excavation and tunnel
construction on ground response in urban areas. For this reason, a collaborative research pro-
gramme was established, as described in [31]. Two control sites were designated for the purpose
of taking field measurements: one located at St. James’s Park and the other at Southwark Park.
Both locations are characterised by completely different geological conditions, which allowed
for the investigation of the impact of tunnelling on clayey (St. James’s Park - London Clay)
and granular (Southwark Park - Woolwich and Reading deposits) soils. The sites were equipped
with the instrumentation capable of measuring ground movements (surface settlement points,
inclinometers and extensometers), as well as water pressure (piezometers) in the vicinity of the

tunnels. The full report on the obtained results was published in [32, 33].
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Given the nature of this research, out of the two control sites, the example of St. James’s
Park has been examined. It is a very well documented case study, with field data available
in [125, 156]. Additionally, the extensive research on the London Clay mechanical properties,
e.g. [56, 57, 67, 122, 124], has been carried out over the years, making this case exceptionally
suitable to use as a validation for numerous studies on tunneling simulations and new material

models, e.g.[4, 3, 16, 54]. The results of the following analysis have been published in [46].

Geometry and soil conditions

The simulation of the problem is carried out as a plane strain analysis. The model geometry and
FE mesh are presented in Fig. 7.1. The dimensions of the FE domain are consistent between
the examples found in literature, e.g. [15, 16, 4, 59], and have therefore been used in the
presented calculations. Two tunnels, each with a diameter of 4.85 m, were excavated in London

Clay using open-face shield and mechanical backhoe methods. A concrete lining, 0.17 m thick,
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Fig. 7.1: Plane strain geometry and FE mesh of the back analysed case study of the Jubilee Line Extension twin
tunnels in London Clay at St James’s Park (5682 15-node triangular elements, 45985 nodes). Axes A-C and E-G show

the position of measuring instrumentation (electrolevel inclinometers and rod extensometers)
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was applied to both tunnels. The tunnel axes are located 30.5 m (westbound) and 20.0 m
(eastbound) below the ground surface. Axes A-C and E-G show the placement of the selected
measurement instrumentation. Groundwater level is positioned 5.5 m under the ground surface.
No-flow conditions are applied at the bottom of the domain, whereas seepage is allowed at the
side boundaries and along the tunnel lining.

London Clay deposit is overburdened by 5.5 m of the made ground layer and 2.7 m thick

terrace gravel. Following [4, 16], these two materials are defined as:

e made ground - linear elastic model: E = 5000kPa, v = 0.3, v = 18.0kN/m?, Ky = 0.5;
e terrace gravel - Mohr-Coulomb model: £ = 35000kPa, v = 0.2, ¢ = 1kPa, ¢ = 35°, v =
20.0kN/m3, K, = 0.5.

The mechanical properties of the two London Clay units (B2 - 10.5 m thick, and A3 - 33.8
m thick) are simulated with the A HEBrick material model. Parameter calibration was carried
out via a series of undrained triaxial compression element test based on the laboratory results
reported in [56, 67]. The detailed description of the calibration is presented in Sec. 6.1.4 and
the obtained results are illustrated in Fig. 6.8.

The initial stress conditions K of London Clay deposits were established taking into con-
sideration the related literature. Despite advances in laboratory and in situ testing, the proper
determination of Kj in overconsolidated soils remains a challenge. In the numerical analysis,
presented in [4], a constant value of Ky = 1.5 was adopted, following the findings in [69]. Con-
versely, in [16] and [59], a geological history of London Clay was reconstructed with the use

of the kinematic hardening models, which allowed to obtain the depth-dependent K| profiles.
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Fig. 7.2: Prediction of Ky profiles with a use of kinematic hardening models: (a) the area between two bold black lines
shows the obtained range for 4 analysed models, after [16], (b) model response presented as a bold black line, after [59].

The expression by Mayne and Kulhawy [109] (gray bold dashed line) introduced as a comparison
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These profiles are illustrated in Fig. 7.2. In both cases, for unit A3, the K, value ranges from
0.85 to 1.0, while for B2 unit this the variation is more pronounced, spanning from 0.5 to
1.2. Given that the AHEBrick model is designed to simulate the behaviour of anisotropic stiff
overconsolidated soils, it is not well suited to properly reproduce normally consolidated stress
conditions. Therefore, the initial isotropic stress state Ky = 1.0 has been adopted for both B2
and A3 units.

The AHEBrick model parameters for B2 and A3 units of London Clay are listed in Tab. 7.1.
Following [4], the values of permeability coefficients for London Clay and cover soils are shown
in Fig. 7.1. London Clay exhibits anisotropic permeability, which decreases with depth. Hence,
each London Clay unit has been subdivided into smaller layers to properly represent its flow

properties.

Table 7.1: Parameters of the London Clay B2 and A3 units simulated with the AHEBrick model

Parameter |London Clay B2|London Clay A3
G=f [kPa) 48080 70000
. B 0.5 0.5
Small strain stiffness
ac [+ 2.0 2.0
Dref [kPa] 100 100
. . Gk in [kPa] 2000 7000
Stiffness degradation
[le|]sh [-] 0.0009 0.0004
@ [°] 30 28
kP 15 55
Shear strength criterion el Oa]
¥ [°] 5 5
Dre [kPa] 0 0
kN /m® 20.0 20.0
Unit weight and initial stress 7 [kN/m]
Ko [-] 1.0 1.0

Calculations

The construction of WB and EB tunnels is simulated analogously to the one described in
Sec. 6.2.1. First, the soil elements and pore water pressure are deactivated within the tunnel
face. The tunnel lining is installed by activating plate elements (FA = 4.7 - 10°kN/m, EI =
1.1-10* kNm?/m) and is next subjected to contraction. The applied values of the contraction are
based on the volume loss method. This approach assumes that the volume loss (vy,), measured
at the ground surface, corresponds to the deformation of the soil, that surrounds tunnel, moving
into its boundary. Such value is typically expressed as a percentage of the tunnel’s theoretical

volume [15]. Generally, the calculations are conducted assuming the undrained conditions of
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defined soil deposits. In the utilised FE code [26], this behaviour is simulated by assigning a
high bulk modulus to the pore water. This results in the development of excess pore pressure,
effectively preventing changes in volumetric strain. Reported in [125], the prescribed values of
tunnel contraction are 3.3% and 2.9% in case of westbound and eastbound tunnel, respectively.

In the numerical analysis the following calculation phases were conducted:

1. Initial phase - introduction of the state variables, K| stress conditions, hydrostatic water
conditions;

. Construction of the WB tunnel, application of 3.3% tunnel contraction (undrained phase);

. Consolidation phase At = 256 days;

. Construction of the EB tunnel, application of 2.9% tunnel contraction (undrained phase);

. Consolidation phase At = 415 days;

. Consolidation phase At = 3440 days;

. Consolidation phase At = 1831 days.

N O Ot = W N

The included consolidation phases align with the actual site schedule.

Results

Fig. 7.3 shows the separate surface settlement troughs obtained immediately after the con-
struction of the WB and EB tunnels. The results of the initial analysis - assuming undrained
conditions for all soil layers - are represented by the solid bold black line (curve no. 1). The
comparison of the obtained soil response to the actual field measurements [125, 156] show the
high degree of agreement.

The cover soils, however, are non-cohesive and coarse-grained, so the assumption of undrained
conditions is not appropriate. Consequently, a second analysis was performed in which undrained
conditions were applied only to the London Clay layer, while the remaining soil layers were
treated as drained. The contraction values remained unchanged, 3.3% and 2.9% for WB and
EB tunnels, respectively. The resulting settlement troughs, shown as curve no. 2, are too deep,
exceeding the measured settlements at the tunnel centerline by 15% for the WB tunnel and
21% for the EB tunnel.

Recommended in [125], contraction values are considered to be unusually high [86, 155].
Therefore, the third analysis was conducted using the updated contraction values: 2.8% for
westbound tunnel and 2.4% for eastbound tunnel. The surface settlement profiles, represented
by curve no. 3, show the best agreement with the field data.

Following these findings, the remaining results exclude the case with all soils defined as

undrained (analysis no. 1). The comparison between the calculated vertical and horizontal
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Fig. 7.3: Surface settlement profiles following the separate construction of the westbound (left) and eastbound (right)
tunnels, showing a comparison between field measurements [125, 156] and the calculation results. Different behaviour of

cover soils and tunnel contraction values are considered

displacement components, obtained immediately after the undrained calculation phases of WB
and EB tunnel construction, and the corresponding field measurements along selected vertical
axes are presented in Figs. 7.4 and 7.5. Both examples of drained cover soil analyses are
considered. The soil deformation of the calculated cases is slightly higher compared to the
measurements, especially considering the horizontal displacement component. However, the
overall material response show great similarities to the field data. In addition, the differences
between results obtained from analyses 2 and 3 appear to be marginal from the practical point
of view.

The cumulative long-term settlement troughs, located 5.0 m below the ground surface, are
presented in Fig. 7.6. In this analysis the case of the reduced contraction values is considered.
The obtained soil response is shown as a total settlement value after each calculation phase,
including consolidation before and after the EB tunnel construction. These results are compared
to the field measurements found in [16]. The calculated soil deformation show a satisfactory
correlation with the field data only during the construction of WB and EB tunnels. However, the
settlement induced by ground consolidation is grossly underestimated. It is especially prominent
after 15.5 years (5686 days) from the EB tunnel construction - the calculated settlement troughs

are nearly two times smaller than the measured ones. Furthermore, the insignificant differences
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A,C) displacement components, obtained immediately after the westbound tunnel construction

between two last calculation phases indicate that the settlement stabilises after the period of

15 years, whereas this tendency is not observed in the real case.

Conclusions

Considering surface settlement troughs and displacement changes in the tunnel vicinity, the
results of the twin tunnel construction analysis show very good match to the measurements.
Both the depth and the shape of the calculated displacement profiles are comparable to field
data, suggesting that the AHEBrick model is capable of correctly simulating anisotropic stiff-
ness. The deformation obtained for short-term and undrained conditions is especially agreeable,

which from a practical perspective is desirable, as the most critical differential displacement
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occur during that time. Nevertheless, the final settlement values are strongly correlated with
the assumed contraction values and flow conditions. Ultimately, in order to reflect the actual
state, a very good geotechnical survey must be carried out beforehand. In contrast, long-term

settlement values are significantly underestimated, which means the model improvement is

needed.
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Fig. 7.5: The comparison of the field data [125] and the calculated vertical u, (axes E,F,G) and horizontal u, (axes

E,G) displacement components, obtained immediately after the eastbound tunnel construction
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construction of the WB and EB tunnels, while the graph on the right shows the settlements following the construction
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7.2 FE and HG-A tunnels in Opalinus Clay at Mt. Terri
Rock Laboratory, Switzerland

Numerous studies are currently being conducted with the aim of investigating soil suitability
for storing nuclear waste products. This type of research is being conducted at the Underground
Rock Laboratory (URL) in Mt Terri, Switzerland. It is a very extensive research project run by
the international consortium of various organisations from different countries, operating under
the auspices of the Swiss Federal Office for the Environment. The entire laboratory centre is
built in Opalinus Clay deposits. Over the years, research has been conducted there to determine
the hydrogeological, geochemical and geotechnical properties of this soil and its suitability to
store nuclear waste. The layout of the laboratory is presented in Fig 7.7. It is located 300 m
below the ground surface and it consists of various well-equipped and well-documented trial
tunnels. In this section two tunnels are analysed: the FE and HG-A tunnels (marked in the
figure).

Opalinus Clay is a heavily overconsolidated stiff clay, considered as a transitional material
between soil and rock [21]. Due to its complex geological history, Opalinus Clay is characterised
by pronounced bedding planes, often inclined to the horizontal direction. Hence, considering
its structure, it exhibit anisotropic stiffness and strength properties. This material has been
thoroughly tested in laboratory conditions, e.g. [51, 168, 169]. Additionally, an in-depth study
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Fig. 7.7: The layout of the Mt. Terri Underground Rock Laboratory (the picture is the property of the Federal Office
of Topography swisstopo [116]). The FE and HG-A tunnels are analysed in this section

of the material’s mechanical properties was carried out by the National Cooperative for the
Disposal of Radioactive Waste (Nagra), and the results of their experiments are presented in
an extensive set of technical reports.

The Opalinus Clay tunnelling cases are often used in order to validate constitutive models
which introduce strength anisotropy, e.g. [77, 98, 102]. By conducting back analyses of the
tunneling problems with the use of the A HEBrick material model, this will allow to determine
whether a model that accounts only for stiffness anisotropy can still produce satisfactory results
when simulating a material with both anisotropic stiffness and strength.

The mechanical properties of the Opalinus Clay deposits are simulated with the A HEBrick
material model. The set of the obtained material parameters is presented in Tab. 7.2. The
parametric calibration was conducted through undrained triaxial compression element tests
based on laboratory data reported in [87]. The results of the analysis are illustrated in Fig.
6.13 and the detailed description of the examinations is presented in Sec. 6.1.4. The material is
fully saturated. The soil permeability is very small and exhibits anisotropy in directions normal
and parallel to the bedding plane arrangement. However, the A HEBrick is not able to simulate
anisotropic permeability if material’s plane of isotropy is inclined to the horizontal direction.
Hence, the average value of hydraulic conductivity k, = k, = 0.0173 - 10-°m/day [105] is
adopted.
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Table 7.2: Parameters of the Opalinus Clay simulated with the A HEBrick model

Parameter Opalinus Clay
G=f [kPa] 126600
- 0.45
Small strain stiffness il
ag H 1.77
Dret [kPa] 100
G min [KP 25300
Strain degradation vhtmin (KPa]
llel|sh [] 0.0002
¢ [°] 35
kP 1000
Shear strength criterion d Oa]
v [°] 5
Pre [kPa] 1
Unit weight v [kN/m?] 24.7

Due to high depths, the ground surface is not modelled. The field stress applied in the
calculations corresponds to the in-situ stress conditions [43], which values, defined for the
model’s global axis, are: o, = 6.5MPa in vertical direction, 0,, = 4.5MPa in horizontal
direction and ., = 2.5 MPa (out of plane). Initial stress conditions are posed as constant within
the analysed geometry, i.e. no gradients of effective stress and pore pressure are considered
(v = vw = 0kN/m?). Within the domain a very high stress level occurs, hence all external
boundaries are constrained. The groundwater flow is boundaries are open and seepage is allowed
along the tunnel circumference. In the FE code [26], it is possible to chose the type of excess pore
water pressure calculations. For cases of a material being subjected to considerable stresses, the
use of Biot’s effective stress concept is recommended. The applied parameter values are: bulk

modulus of water K, = 1.0 GPa, Biot’s pore pressure coefficient ag;,; = 1.0.

7.2.1 FE tunnel

The main motivation behind the construction of the Full-scale Emplacement (FE) tunnel was
to investigate the coupled effect of the thermo-hydro-mechanical response of soil to the tunnel
drilling [115]. The FE tunnel, 50 m long and 3 m in diameter, was excavated using a pneumatic
hammer and a roadheader [102]. The plane of isotropy of the Opalinus Clay deposit is inclined
6 = 33° to the horizontal direction. The geometry of the problem, shown in Fig. 7.8, was
adopted from [77, 98, 102]. The dimensions of the square FE domain are 50.0m x 50.0 m. The
centre point of the tunnel is located in the middle of the model. The Fig. 7.8 shows the selected
field measurement equipment: two 6-m-long extensometers (EXT-01, EXT-02) in directions
normal and parallel to the bedding plane arrangement, two inclinometers (INCL-10, INCL-11)
located above the tunnel face and two piezometers (BFEA-02, BFEA-05). The tunnel is divided
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Fig. 7.8: Geometry and FE mesh of the FE tunnel drilling problem (4754 15-node triangular elements, 38265 nodes).

Red dots and purple lines represent the selected measurement devices (inclinometers, piezometers and extensometers)

into four sections: access section, plug section, test section and interjacent sealing section. The

analysis concerns soil response in the test section. In this section the shotcrete lining, with

thickness of 0.16 m, was applied.

Calculations

The numerical analysis consists of the following calculation phases:

1. Initial phase, field stress conditions;
2. Tunnel drilling, At = 1day;

3. Consolidation phase, fresh shotcrete, At = 12 days;
4. Consolidation phase, stiff shotcrete, At = 77 days.

All calculation phases are performed as consolidation analysis. Individual selected cross-

sections within the test section are analysed, therefore the duration of tunnelling is assumed

to be 1 day. The tunnel construction procedure is analogous to that given in Sec. 6.2.1. The

duration of the consolidation phases correlates with the times given in [102, 115]. The first

consolidation phase simulates short-term deformation of soil. During this phase, shotcrete lining

is applied, which material properties correspond to the stiffness of the fresh shotcrete. Long-

term deformation is considered during the 77-day consolidation phase. In this phase, cured
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shotcrete is taken into account. Mechanical parameters of the shotcrete lining are adopted from
[152]:

e fresh shotcrete: EA = 2912kN/m, EI = 6.21kNm?/m, v = 0.2;
e cured shotcrete: EA = 4592kN/m, EI = 9.80kNm?/m, v = 0.2.

Results

During construction, tunnel deformation was continuously monitored at selected convergence
measurement sections. The analysed cross-section (C4) was located at TM27.6 (27.6 m "tunnel
metre"). In this section, five observation points (P1-P5) were installed [102, 115]. Presented
in Fig. 7.9, measured tunnel lining convergences over a 90-day period are compared with the
corresponding calculated displacement. The presented deformation is scaled by a factor of 20.
Overall, the results show very good qualitative and quantitative agreement, particularly at

points P2-P4. In contrast, points P1 and P5 deviate significantly from the measurements. This

P3
p2 P4

P1 P5

L P3 T Il =001m T Il =001m

D ot

P4

P1)

shotcrete

discontinuity

(€] (b)

Fig. 7.9: Tunnel lining convergence, obtained at points P1-P5, during a 90-day period: a) calculated deformation com-
pared to b) field data [115]. The deviation from the measurements at points P1 and P5 is attributed to the discontinuity

in the tunnel liner
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discrepancy is attributed to the failure of the shotcrete invert, which caused a discontinuity in
the lower tunnel wall [115].

The measurements of vertical displacement and pore water pressure, shown in Fig. 7.10,
were taken at TM31.0 [116]. Monitoring covered boring process of the entire tunnel, however,
Fig. 7.10 presents only the changes induced by the excavation at this section. For this reason,
the values of settlement are shown starting from zero. Most of the calculated settlement occurs
during the tunneling phase, with the remainder resulting from consolidation. In the real case,

rapid settlement was observed within the first week. Overall, the final calculated settlements
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show good agreement with the measurements, particularly at point INCL-11. At point INCL-10,
however, a slight overestimation was noted.

Pore water pressure changes were recorded at two piezometers, BFEA-02, BFEA-05. The
initial pressure at the site was approximately o,, = —2150, kPa and it decreased as excavation
progressed. The calculated results show reasonable agreement only at the measurement point
BFEA-05, although the magnitudes are too small and any similarity becomes apparent only
after 30 days. At point BFEA-02, the calculated values are significantly overestimated.

The calculated radial displacement values differ by approximately 0.005 m. Larger displace-
ments were observed in the direction normal to the plane of isotropy (EXT-02), indicating that
the tunnel lining deformation is non-uniform and influenced by the orientation of the bedding

planes.

The influence of bedding plane inclination on tunneling induced deformation

The effect of the plane of isotropy inclination angle 6, relative to the horizontal direction,
on material response is examined by comparing the analysed case with a reference example,
where the bedding plane is horizontal (f = 0°). The deformation of the tunnel lining for two
consolidation phases is presented in Fig. 7.11. The obtained deflection is scaled 40 times. For
0 = 0°, the deformation pattern is symmetrical about the y-axis. In contrast, when 6 = 33°,

the deformation is visibly inclined relative to the plane of isotropy. Due to the bedding plane

:I: [lu]] = 0.005m consolidation 12 days :I: [lu]] = 0.005m consolidation 77 days
fresh liner stiff liner
x0Tl xoul
2 o<
S S
~ I
& &
N N
¥ 5/

6 =33° 6 =33°

Fig. 7.11: The comparison of tunnel lining deformation for two cases of bedding planes oriented § = 0° and 6 = 33° to

the horizontal direction
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Fig. 7.12: The comparison of excess pore pressure generation, after the tunnel drilling phase, for two cases of bedding
planes oriented 6§ = 0° and 6 = 33° to the horizontal direction

inclination, the model cannot be simplified by assuming symmetry and analysing only half of
it. Furthermore, as consolidation progresses, the inclination of the deformation becomes more
pronounced.

The inclination angle of the bedding planes also influences the distribution of pore water
pressure. This effect is illustrated in Fig. 7.12, which presents maps of excess pore pressure
distribution after the first phase of tunnel excavation. Both the shape of the pressure dispersion
and the magnitude of the pore pressures vary with bedding plane orientation. For # = 33°, the
extreme pressure values are approximately 300 kPa lower than in the case of § = 0°.

The influence of the plane of isotropy inclination is clearly visible in the stiffness degra-
dation maps shown in Fig. 7.13. Considerable reduction in stiffness occurs during the tunnel
drilling phase, with the degradation most pronounced along the axis of symmetry defined by
the unit vector v. During consolidation, significant unloading develops at the depth of the tun-
nel face, along the plane of isotropy, as well as directly above and below the tunnel. Overall,
stiffness degradation is greater when # = 0°, whereas unloading induced by consolidation is
more pronounced when 6 = 33°.

Conclusions

The obtained settlement profiles and lining deformations show a high degree of consistency

with the measurements. Significant differences in this case can be attributed to the tunnel
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Fig. 7.13: Maps of stiffness degradation obtained for two cases of bedding planes oriented § = 0° and 6 = 33° to the

horizontal direction. The intensity of stiffness degradation is indicated by the number of active bricks nap

lining failure. Conversely, the predicted changes in pore water pressure do not align well with the
measurements. This inconsistency may be influenced by the selected pore water calculation type
in the used FE code [26]. However, these discrepancies may also result from data interpretation,
as well as the placement of the measurement devices along the tunnel length. The measurements
were recorded throughout the entire construction period of the tunnel, which in the case of plane
strain analysis may not always be correctly represented. In this context, it should be considered

whether a three-dimensional analysis would have provided more reliable results.
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7.2.2 HG-A microtunnel

The HG-A tunnel was constructed to investigate gas leakage and its potential release paths
[105]. The tunnel measured 13 m in length and had a diameter of 1.04 m. Excavation was
carried out using a micro-TBM auger in Opalinus Clay, where the bedding planes are inclined
at 6 = 45° to the horizontal. The geometry of the model and the FE mesh are shown in Fig. 7.14
and are analogous to the analyses reported in [77, 98]. The dimensions of the square domain are
20.0m x 20.0m, with the tunnel centre located in the middle. Vertical displacement and pore
water pressure were monitored using piezometers (HG-A2, HG-A3) and inclinometers (HG-A5,

HG-AT).

Calculations

Similarly to the analysis of the FE tunnel, all calculation phases in HG-A tunnel simulation

are consolidation phases:

1. Initial phase, field stress conditions;
2. Tunnel drilling, At = 7 days;
3. Consolidation phase, At = 3 days.

20
h > [m]
A
) N
\/
, measurement setup:
° 7
N ‘. e inclinometers
VR4 )
VP e piezometers
< Y

Fig. 7.14: Geometry and FE mesh of the HG-A microtunnel drilling problem (2380 15-node triangular elements, 19185
nodes). Red and blue dots represent the selected measurement devices (inclinometers and piezometers)
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4. Consolidation phase, At = 90 days;
5. Consolidation phase, At = 100 days.

The tunnel construction phase corresponds to the actual excavation period, while the subse-
quent three consolidation phases represent the time during which measurements were recorded
[105]. Tunnel drilling was simulated by deactivating the soil cluster and pore water within the
tunnel face. The micro-TBM was modelled by introducing plate elements with very high stiff-
ness: EA = 10.25 - 105kN/m, EI = 2135kNm?/m, v = 0.0. In order to simulate its removal,
the lining was deactivated in the following 3-day consolidation phase. The tunnel lining was

not applied in the analysis.

Results

The presented measurement results were obtained from devices located in the test section of
the tunnel, which covered its final part (9-13 m). The comparison of measurements and calcu-
lations is shown in Fig. 7.15. Solid lines indicate field data and dashed lines define calculation
results. Vertical component of displacement is measured at points above and below the tunnel,
located at the same distance from the centre point of the tunnel, but the observed response
differ. The settlement increases very quickly during the excavation and then stabilises. The
obtained heave, however, continuously rises and the displacement does not stabilise during the
200 days of monitoring. These differences may be a result of construction, measurement errors
or inconsistencies in the Opalinus Clay deposit. In contrast, the displacement values obtained
from the calculations increase slightly during the excavation, but the actual drop is visible after
the micro-TBM removal. After that time, the displacements remain at the same level. The
obtained displacements are significantly overestimated.

Pore water pressure is measured above and next to the HG-A tunnel. The initial pore water
pressure at the tunnel location is 0,, = —900kPa. The pressure changes measured above
the tunnel are generally stable, but there is a significant peak at the beginning and then,
about halfway through the observation period, a sudden drop in pressure occurs. The pressure
calculated at this point drops rapidly at the beginning due to the tunnel drilling procedure and
then stabilises. The results obtained are comparable to the measurements after about 100 days.

The water pressure measured on the side of the tunnel rises rapidly due to the tunnel
construction and then dissipates to its initial state during consolidation. The calculations also
show a peak in pressure increase, but it is much smaller. During consolidation, the pressure
initially drops sharply and then stabilises. Ultimately, the pressure value obtained is too low

and becomes comparable at the end of the measurements.
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Fig. 7.15: The comparison between calculated and measured [43] settlement: a) u,, b) pore water pressure op, obtained

from HG-A tunnel construction

Conclusions

The calculated results show significant discrepancies from the measurements both in terms of

the settlement profiles and changes in pore water pressure. The material parameters of Opalinus

Clay soil were assumed to be the same for the FE and HG-A tunnel analyses. However, since

much greater consistency was achieved for the FE tunnel, this suggests that the soil properties

may differ between the sites. Furthermore, these differences could be influenced by the strength

anisotropy of Opalinus Clay. As the A HEBrick model does not account for strength anisotropy;,

it should be incorporated and the analyses repeated.
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7.3 Open-pit trial excavation in Oxford Clay at Elstow,
UK

The ground investigations, carried out in the 1980s, were aimed at finding a suitable location
for the storage of low-level nuclear waste. Various locations in the United Kingdom were con-
sidered, one of which was in Oxford Clay at Elstow, Hertfordshire. The investigation involved
constructing a full-scale excavation, the size of which would correspond to that of the nuclear
waste repository, and monitoring ground deformation.

The surface dimensions of the constructed excavation were 38 m x 104 m, with the depth of
10 m. This case was heavily instrumented with extesometers, inclinometers and piezometers,
which allowed to measure the obtained horizontal and vertical displacements and pore pressure
in the selected points. The field measurement instrumentation and its location is presented
in Figs. 7.16 and 7.17, illustrating the geometry of the problem for the plane strain and 3D
analyses. Only one half of the excavation is considered, however the displacement measurement
points were placed on both sides, symmetric to the excavation axis.

The full course of the experiment and the obtained results were reported in [132] and later
in [70]. In [132], the advanced laboratory tests were carried out on Oxford Clay, some of which
are presented in Fig. 6.12 in Sec. 6.1.4.

This case of the full scale open-pit trial excavation in Oxford Clay has been used in order

to validate the AHEBrick model, and the comparative results were published in [101].

Geometry and soil conditions

The numerical analysis includes plane strain and 3D simulations. The total dimensions of the
3D model (Fig. 7.17) are 50.0m x 166.0m x 20.0m. All results are presented for the cross-
section y = 67.5m, which dimensions correspond to the plane strain geometry (Fig. 7.16). The
groundwater table in located 1.0 m below the ground surface. The groundwater flow conditions
of the FE domain are closed at the excavation symmetry line and at the bottom. The side
boundaries are defined as a constant water head, located at y = —1.0m in case of plane strain
model, and at z = —1.0m for three dimensional analysis. Seepage is allowed at the top of the
model and along the excavation slopes.

The 11-m-thick Oxford Clay layer is overburdened by 1.0 m of clayey head deposits and
2.0 m of the Weathered Oxford Clay. Below the Oxford Clay sediment, 4.0 m of Kellaways
Sand and 2.0 m of Kellaways Clay are located. The top head deposits layer is described with
Mohr-Coulomb model (E,.q = 60000kPa, v = 0.3, ¢ = 30°, ¢ = 10kPa, v = 18kN/m?, k, =
kyr = 0.01m/day, Ky = 1.0). The remaining soils exhibit very high stiffness, hence they are
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Fig. 7.16: Plane strain geometry and FE mesh of the back analysed case study of the trial excavation in Oxford Clay

(1605 15-node triangular elements, 13035 nodes). Black dots represent the location of the displacement measurement

points (extensometers and inclinometers)

simulated with the AHEBrick model. Material properties are generally adopted from [70, 132].

Since the excavation analysis mainly concerns Oxford Clay, some of the recent laboratory test

are taken into consideration [29, 72]. The Oxford Clay parameter calibration is presented in Fig.

7.18. The left-side graph illustrates the material response to the relation between deviatoric and

volumetric strain, obtained from triaxial radial tests in drained conditions [132]. The closest

fit to the experimental data is achieved for ag = 2.3 and 8 = 0.4. The right-side graph shows

undrained stress paths in p — ¢ plane [72]. The values of strength parameters are adopted as

intermediate values between peak strength envelope and critical state line.
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Material properties simulated with the A HEBrick model are presented in Tab. 7.3. Reported
in [70, 132] initial stress conditions are Ky = 1.0 for the head deposits and Ky = 5.0 for the

remaining soils. It is an unusually high value, so initial stress state is selected based on findings
in [29].

Table 7.3: Parameters of the soil deposits simulated with the AHEBrick model

Parameter Weathered | Oxford Clay | Kellaways Kellaways
Oxford Clay Clay Sand
Gf [kPa] 120000 120000 157300 157300
. . B[] 0.4 0.4 0.5 0.5
Small strain stiffness
ac [ 2.3 2.3 1.7 1.7
Dret [kPal 100 100 100 100
. . G in [kPa] 7000 10000 10000 10000
Strain degradation
lle]|sn [-] 0.0005 0.0005 0.001 0.001
?[°] 28 28 30 30
o c [kPa] 50 75 30 20
Shear strength criterion S
¥ [°] 3 3 3
Dre [kPa] 1 1 1 1
Flow ky = kp[m/day] | 0.0518-107% | 0.0518 - 107® | 0.0518 -10~* | 3.46- 1073
o . ~ [kN/m?] 18.5 17.5 19.5 19.5
Unit weight and initial stress
Ko [] 1.8 1.8 1.5 1.5

Calculations

The excavation construction is conducted in 4 phases of soil removal and dewatering. In each
phase the selected soil cluster is deactivated and the water table is lowered by the introduction
of the new global water level, located along the current excavation slope on the left side of the
model. On the right side of the domain the water head is kept constant 1.0 m below the ground
surface.

The simulation is carried out as fully-coupled flow deformation analysis. The duration of
each excavation phase is consistent with the timeline reported for the real case. After the
construction two consolidation phases are carried out, the duration of which coincides with the
field measurements reading.

The numerical analysis consists of the following calculation phases:

1. Initial phase introduction of the state variables, K| stress conditions, hydrostatic water
conditions;

2. Excavation of 3-m-thick layer, At = 10 days;

3. Excavation of 2-m-thick layer, At = 2 days;



144 7 Application of the AHEBrick model in case studies

000050 T T T T T T T T T T T T T T T 3500 rrTrrrrrrprrrrrrr o r T T |‘| LI
/4 B Q} 4
- p r N
q g B
4 3000 b
0 =90° i [
0.00025 - b=68 . B
0 6 =0° i 2500 N -
0= —90° . B
1 __ 2000 ]
- S
5 °f 12 ¢
e ) = ()° measurements i = 1500 [ ]
F—F—F 0§ = 0° calculations i
6 = 64° measurements [
E-8-8 ¢ = 64° calculations ) 1000 ]
-0.00025 |- P § i
e () = 90° measurements
©—6—© () = 90° calculations ) r g
5 =04 0 = —90° measurements | 500 g ]
i ag = 23 6 = —90° calculations : pg i{& !
000050 L oL b L 0 [ EFIEL N, S YRS STRNANINTD SN AT RIS AN AATITID SIS
-0.0005 -0.00025 0 0.00025 0.00050 0 500 1000 1500 2000 2500 3000 3500
e[ p[kPal
@ (b)

Fig. 7.18: The parameter calibration of the laboratory test data: a) the e, — ey relation obtained from the drained

triaxial radial tests [132], b) undrained stress paths in p — ¢ plane [72]

4. Excavation of 2.5-m-thick layer, At = 5days;
5. Excavation of 2.5-m-thick layer, At = 26 days;
6. Consolidation phase, At = 6 days;

7. Consolidation phase, At = 78 days.

This procedure is the same for both plane strain and 3D simulations.

2D modelling

The results of the plane strain analysis are presented in Fig. 7.19. The figures show a part of the
model. The black and blue arrows represent soil displacement obtained from the measurement
points, located on the right and left sides of the excavation, respectively [70, 132]. Their values
are averaged from the different field instrumentation situated close to each other. The measured
deformation was obtained 6 days (two top pictures) and 84 days (two bottom pictures) after
the excavation was completed. It should be noted that, despite the assumed symmetry of the
structure, the reported field data differ on both sides of the excavation. This suggest that the
soil stratification is naturally diverse and the flow conditions may not be uniform.

The soil displacement obtained from the numerical simulation is shown in a form of red
vectors, in selected cross-sections. Qualitatively and quantitatively, the calculated results show a
better agreement with the deformation measured on the left side of the excavation (blue arrows).

The ground heave, achieved in the vicinity the excavation bottom, show great similarities to
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the field data. Conversely, for the cross-section located near the excavation slope (z = 13m),
the appropriate soil uplift was not possible to obtain after 6 days. After 84 days, however, it
is noticeable, and the inclination of the displacement vectors is nearly identical. The largest
discrepancies between calculations and measurements are visible for points located furthest
from the excavated area. Here, the calculated displacements are underestimated by almost

three times, especially near the ground surface.

3D modelling

The displacement vectors, obtained from the 3D analysis, are shown in Fig. 7.20, for the se-
lected cross-section y = 67.5m. For this case, the calculations also show better agreement with
the measurements points located on the left side of the excavation. The overall soil deformation
in the excavation vicinity show greater similarities to the field data than in the case of the
plane strain calculations. However, at the excavation bottom, the results are slightly overesti-
mated. Additionally, the settlement, calculated at the points located further from the axis, is

significantly too small, much smaller than for the 2D analysis.
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In theory, the calculations obtained from plane strain and three dimensional analyses should
show a high degree of similarity. It is not applicable in this case because the 3D geometry is not
a perfect representation of an extruded 2D FE domain. Additionally, due to the applied fully-
coupled flow deformation analysis, differences in soil response are generated by the advanced

groundwater flow.

The influence of flow boundary conditions on soil deformation

In order to improve the results, additional numerical analyses has been performed, assuming
that water flow is impossible at the sides of the FE domain. The obtained soil response in
presented is Fig. 7.21 for the plane strain calculations and in Fig. 7.22 considering 3D modelling.
In the both cases, soil heave at the excavation bottom decreased as compared to the previous
numerical simulations, which in the case of 3D analysis leads to a perfect match between
the calculated displacements and the field measurements. Additionally, the settlement at the

points furthest from the excavation increased in comparison to the examples assuming open
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Fig. 7.21: Plane strain analysis; soil deformation obtained from the analysis assuming closed ground water conditions
at the sides of the FE domain

flow conditions at side boundaries. Nevertheless, despite the improvement, the displacement
values obtained in these points are still too small.

Due to the very low values of isotropic permeability coefficients of clays k, = kj, most of the
water flow occurs in the Kellaways Sand layer. The overall flow intensity is significantly higher
considering open boundary conditions. Here, the pore water pressure increases and, in points
further from the model axis, the resulting settlement values are lower. In addition, along with
the higher groundwater flow rate more water is displaced towards the excavation bottom. By
closing off the possibility of water flowing in from the sides, less water moves to the excavated

area and ground heave, due to soil unloading, is not as much pronounced.

Conclusions

The results of the analyses show acceptable agreement to the measurements, especially in
the vicinity of the excavation bottom. In this area, the predicted displacement profiles show
adequate accuracy both in the magnitudes and directions. Any inevitable differences between

the calculations and measurements may be attributed to the performance of the AHFEBrick
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model but also to the limitations of geological surveys, permeability, and groundwater boundary

conditions used in the coupled deformation-flow analysis.
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Conclusions

Stiff overconsolidated soils exhibit anisotropic mechanical properties due to the geological
processes that influence soil microstructure. However, the research on stiffness and strength
anisotropy is relatively recent, mainly because laboratory testing in this area is complex and
requires advanced equipment capable of measuring soil properties in multiple directions.

Although the influence of anisotropy on soil behaviour has been well established, material
models available in commercial FE codes are, in most cases, isotropic. This is largely because
implementing a robust and consistent framework for anisotropic soil constitutive models con-
tinues to be a significant challenge.

This gap is addressed by the A HEBrick model, presented in this work. Its structure is simple,
following the framework of standard elasto-plastic models. The pre-failure barotropic stiffness
is described through an anisotropic hyperelastic stress-strain relation. And nonlinear stiffness
degradation is controlled by Brick-type procedure. The conventional isotropic Matsuoka-Nakai
shear strength criterion limits admissible stress states. More importantly, the number of required
material parameters is not excessive, and the model parameters can be determined using existing
experimental testing methods.

The AHEBrick model was verified and validated through element test simulations, analysis
of the geotechnical BVPs and through back analysis of real geotechnical cases reported in lit-
erature. The simulation of laboratory element tests included triaxial compression under both
drained and undrained conditions (CID, CIU), drained radial paths, and analyses of how stress
history under drained conditions affects material behaviour. In addition, the model was vali-
dated through a non-standard parameter calibration, where soil parameters were determined
by comparing the simulated soil response with selected experimental data.

Based on these element tests, a parametric study of selected model parameters was carried
out (ag, B, ||€]|sn, Ko). The influence of inherent cross-anisotropy coefficient a on stress paths

under undrained conditions, and consequently on soil strength, was demonstrated. As the value
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of ag increases, undrained shear strength gets lower. Furthermore, ag has a very strong influ-
ence on stiffness changes under drained conditions. Calibration of the model parameters using
laboratory data for selected stiff soils yielded satisfactory results, confirming that the values of
the obtained parameters are both consistent and plausible.

The investigations on geotechnical BVPs were carried out for tunnel drilling, open-pit exca-
vation and supported excavation cases. The aim of this research was to examine the impact of
anisotropy on the soil-structure response. For this reason, in every case, the homogeneous soil
layout, simple geometry and basic flow conditions were considered. Three values of the inherent
cross-anisotropy coefficient ag = 0.7,1.0,2.0 and three initial stress states Ky = 0.5,1.0,2.0
were studied.

Two tunnel drilling examples were analysed: deep tunnel and shallow tunnel. In both cases,
the value of the inherent cross-anisotropy coefficient a highly influences soil response. Along
with the increasing ag value, the obtained settlement troughs get progressively deeper and
steeper. Moreover, stiffness anisotropy influences changes in the tunnel lining. Depending on the
assumed values of ag and K, the shape and magnitude of deformation and bending moments
are different.

For the open-pit excavation case, the influence of az and Ky on soil behaviour is found to be
generally negligible. Only very small differences were observed between the responses of isotropic
and anisotropic soils, with the largest deformations occurring at a = 1.0. Similarly, the largest
displacements were obtained when the initial stress state was set to Ky = 2.0. However, from
an engineering perspective, these differences are minor and not worth considering.

For the deep supported excavation case, displacements were again larger for isotropic mate-
rial. However, unlike in the open-pit case, the differences between isotropic and anisotropic soil
responses are much more pronounced and cannot be overlooked. Interestingly, when ag # 1.0,
the soil response is practically identical regardless of whether the horizontal stiffness is greater
or smaller than the vertical stiffness. In contrast, when isotropic material is subjected to higher
initial horizontal stresses (K, = 2.0), the resulting settlement troughs and horizontal displace-
ment components are significantly greater than in other cases.

A similar pattern is observed in the displacement and bending moments of the diaphragm
wall. Overall, the influence of inherent cross-anisotropy a¢ becomes significant only when the
soil is subjected to anisotropic initial stress conditions.

In all cases, the influence of ag and K, on stiffness degradation is evident, particularly in
the tunnelling and supported excavation examples. Therefore, it can be concluded that the
evolution of stiffness is critical in determining the depth and shape of the resulting settlement
profiles.
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The role of stress-induced anisotropy was also examined by comparing the isotropic case
(g = 1.0, Ky = 1.0) calculated with the AHEBrick model to that obtained with the isotropic
hypoelastic model. The results indicate that for tunnelling and open-pit excavation the effects
of stress-induced anisotropy are negligible. In contrast, for supported excavation, stress-induced
anisotropy shows a significant influence and seems to be the major factor generating material
deformation.

The back analysis was conducted for the real cases of twin tunnel construction in London
Clay, FE and HG-A tunnels in Opalinus Clay and trial open-pit excavation in Oxford Clay. In
order to obtain comparable response the model geometry and construction procedure are closely
based on the data reported in literature. By analysing the results obtained from simulations of

real geotechnical cases, the following conclusions can be drawn:

e The implemented stiffness anisotropy provides a good representation of soil behaviour, par-
ticularly under undrained conditions. From the engineering perspective, the agreement be-
tween model response and field measurements is especially valuable for short-term deforma-
tions, as the most critical differential displacement occurs during this stage.

e Considering long-term soil response, the results obtained from the calculations are signifi-
cantly underestimated. Similarly, large discrepancies between model performance and field
data are evident in case of Opalinus Clay, as it exhibits characteristics of rock matrix. These
results suggest that stiffness anisotropy alone is insufficient for capturing settlements induced
by consolidation. Additionally, the AHEBrick model is incapable of the proper simulation
of rock materials. In such cases, strength anisotropy should also be incorporated to properly
reflect soil response.

e In most of the geotechnical problems in preconsolidated fine-grained soils, analysed in this
study, the idea of introducing anisotropy only into the elastic part of the material model
provides, from an engineering perspective, sufficient accuracy of numerical simulations for
predicting deformations. This, therefore, confirms the thesis of the study.

e Finally, to obtain results consistent with experimental evidence, material parameters must
be selected with great care, and the applied flow conditions must be thoroughly considered,

as both exert a major influence on the magnitude of the simulated soil response.
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Appendix

A.1 Hyperelastic potential

In this section, the detailed description of all operations conducted in order to calculate tangent
compliance matrix from the hyperelastic potential (Eq. 5.9) are provided.

The hyperelastic potential used in the AHEBrick model is based on the isotropic model
proposed by Vermeer [163]:

ot [200]
W(o) = st 500 (A1)
defined as a function of a stress invariant Q(o):
Qo) = ;mﬁ - ;aabaab. (A.2)

In order to incorporate inherent anisotropy into the formulation, the introduction of the joint

invariant of stress and microstructure is needed [23, 24]:
1 1
Quo,M) = itr (0? M) = iMabO-bco-ca- (A.3)

Following findings in [23, 24], the mixed invariant of stress and microstructure is obtained:

_ 1
Q(U7 M) - ClQ + CQQM - §(Claab0ab + CQMabgchca) =

1
- i(cléacabcébcgca + C2Mab0-bco-ca) -

Mab
1 1
= i(cléab + CQMab)o-bco-ca = imabobcgca' <A4>
Parameters ¢; and ¢y are the material constants in the A HEBrick model. The isotropic potential
from Eq. A.1 can be then modified to account for inherent and stress-induced anisotropy by

replacing stress invariant (o) with mixed invariant Q(o, M):
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148

1-3 o :
(o, M) = w;ﬁ’gm (;Q(U,M)> | (A5)

=

In order to obtain tangent compliance tensor the second derivative of the modified potential

function needs to be calculated.

A.1.1 First derivative

The secant stress-strain relation is obtained by the differentiation of the stress-based potential
in Eq. A.5:

148

_ ol(2 2
o — oW (o, M) o 3p3e_fﬂ l(SQ) ] (A.6)
uo 801-]- N 2 Gaef(]_ + 6) 30@- ’ .
0|69

where partial derivative dor; is calculated as follows:
N <] C = const
o|(2 :
[(362) ] 2148 usl 0(0pe0ca)

802-]- 3 2 5 Mab

aO'bc 80'(3@ o
Map a Oca + 8 Obe | =
Uij Uij

Q

1
= Cmab (2[Uca5bi50j + O—caébjéci + ch5ci5aj + O-bc(scjdai]> =

1
= §C<0_aj6bimab + O—aiébjmab + Ubi5ajmab + Ubjéaimab) =

= §C(Uajma¢ + OaiMaj + Opimp; + Tpimy;) =

= C(oajma; + ovimu;), (A7)
_ 148
o 59|
The final expression of 5o is obtained using the provided relation:
802’ i 1
80; = 5(5%5]‘5 + 0005k) = Liji. (A.8)

In the end, the secant stress-strain relation takes the following form:
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1-8 p=1

pre 2* 2 1

6% = QGfref <3Q> §(Uajmaz‘ + opinmuj) =
0

_ p:e_fﬁ 1(
205" (1/2Q) 2
1

= réo(gajmai + opmu), (A9)

— 1-8
Gy = Gt (V?’Q(UM)) . (A.10)

OaiMai + OpiMp;) =

where

Dref

A.1.2 Second derivative

Tangent compliance tensor Cj;, is obtained by the differentiation of the formulation shown in
Eq. A.9.

B-1
— 5 01(20Q) * (64:mai + Opimp,;
. _OPWeM) _ pe [(SQ) (0 ) (A.11)
L 80@' @O’kl 4G6€f 80_kl ' )
where
9~ % /—/I%
0 [(362) (0ajMai + Ubimbj)] agé%
_ _3 . . . .
aO—k;l 80kl (Ua]maz + szmb])+
II
2__8-1 8(aajmai + O'bl'mbj)
() 2 A.12
+3@ Do (A.12)
Partial derivatives, denoted as I and II, are calculated in a following way:
B—1
-1 (2)2_1 1 00 00cq
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B—3
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0044 00y, 1
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Finally, the second stress derivative of the anisotropic hyperelastic potential W (o, M) gives

the following tangent compliance tensor C":

1 [ (B = 1)(oamak + ookmu)(0ajmae; + opim;)

C;jkl = 4@0 i 4Q + ((5ﬂmki + (Silmjk)symm_ =
Aijrl
Il (Garmak + ook ) (TajMai + Tpimip;) |
= — (S + )™ — (1 — \Taj i) | _
el _( AMki + 0k ) (1-0) 10 |
1
= —Aiju. (A.15)
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